Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0006
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Attacking Ground Vehicles with Ransomware: Watch the Horizon

2022-03-29
2022-01-0358
Ransomware is not a new method of malware infection. This historically had been experienced in the enterprise in nearly every industry. This has been especially problematic in the medical and manufacturing fields. As the attackers saturate the specifically targeted industries, the attackers will expand their target industries. One of these which has not been significantly explored by the ransomware groups are the embedded systems and automobile environment. This set of targets is massive and provides for a vast attack potential. While this has not experienced this attack methodology at length, the research and efforts are creeping towards this as a natural extension of the business. The research focusses on the history of ransomware, uses in the enterprise, possible attack vectors with ground vehicles, and defenses to be explored and implemented to secure automobiles, fleets, and the industries.
Technical Paper

Sensitivity of Automated Vehicle Operational Safety Assessment (OSA) Metrics to Measurement and Parameter Uncertainty

2022-03-29
2022-01-0815
As the deployment of automated vehicles (AVs) on public roadways expands, there is growing interest in establishing metrics that can be used to evaluate vehicle operational safety. The set of Operational Safety Assessment (OSA) metrics, that include several safety envelope-type metrics, previously proposed by the Institute of Automated Mobility (IAM) are a step towards this goal. The safety envelope OSA metrics can be computed using kinematics derived from video data captured by infrastructure-based cameras and thus do not require on-board sensor data or vehicle-to-infrastructure (V2I) connectivity, though either of the latter data sources could enhance kinematic data accuracy. However, the calculation of some metrics includes certain vehicle-specific parameters that must be assumed or estimated if they are not known a priori or communicated directly by the vehicle.
Technical Paper

The Future of OBD: Enhanced On-Board Diagnostic System with Remote Access

2022-03-29
2022-01-0113
Vehicle manufacturers and their suppliers are legally mandated to develop low-emission engine technologies. Type approval for road-vehicles or non-road mobile machines is only granted when the limits for carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), and particulate matters (PM) are observed. In addition to complying with emission standards, road-vehicles must be equipped with a supervising system (OBD) that monitors emission-related components and detects and indicate divergences from admissible pollutant limits. As of today, emission control systems are required for non-road mobile machinery, but not their monitoring by an OBD system. This paper starts with a short introduction to the classical OBD system. For more than three decades, OBD serves as an essential part of the environmental protection.
Technical Paper

Integrating Fuzz Testing into a CI Pipeline for Automotive Systems

2022-03-29
2022-01-0117
With the rapid development of connected and autonomous vehicles, more sophisticated automotive systems running large portions of software and implementing a variety of communication interfaces are being developed. The ever-expanding codebase increases the risk for software vulnerabilities, while at the same time the large number of communication interfaces make the systems more susceptible to be targeted by attackers. As such, it is of utmost importance for automotive organizations to identify potential vulnerabilities early and continuously in the development lifecycle in an automated manner. In this paper, we suggest a practical approach for integrating fuzz testing into a Continuous Integration (CI) pipeline for automotive systems. As a first step, we have performed a Threat Analysis and Risk Assessment (TARA) of a general E/E architecture to identify high-risk interfaces and functions.
Technical Paper

Requirements for the Automated Generation of Attack Trees to Support Automotive Cybersecurity Assurance

2022-03-29
2022-01-0127
Although ISO/SAE 21434 recommends the development of an assurance case for cybersecurity, the precise nature of a cybersecurity case is not explicitly defined within the standard. ...In the case of cybersecurity, this problem is exacerbated by the increasing complexity of vehicular onboard systems, their inherent obscurity due to their heterogenous architecture, emergent behaviors, and the disparate motivations and resources of potential threat agents.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
In conjunction with an increasing number of related laws and regulations (such as UNECE R155 and ISO 21434), these drive security requirements in different domains and areas. 2 In this paper we examine the upcoming trends in EE architectures and investigate the underlying cyber-security threats and corresponding security requirements that lead to potential requirements for “Automotive Embedded Hardware Trust Anchors” (AEHTA).
Research Report

Unsettled Topics in the General Aviation Autonomy Landscape

2022-02-24
EPR2022004
The extent of automation and autonomy used in general aviation (GA) has been accelerating dramatically. This has huge potential benefits for safety given that 75% of accidents in personal and on-demand GA are due to pilot error. However, an approach to certifying autonomous systems that relies on reversionary modes limits their potential to improve safety. Placing a human pilot in a situation where they are suddenly tasked with flying an airplane in a failed situation, often without sufficient situational awareness, is overly demanding. This, coupled with advancing technology that may not align with a deterministic certification paradigm, creates an opportunity for new approaches to certifying autonomous and highly automated aircraft systems.
Research Report

Unsettled Issues in Drive-by-Wire and Automated Driving System Availability

2022-01-28
EPR2022002
While many observers think that autonomy is right around the corner, there many unsettled issues. One such issue is availability, or how the vehicle behaves in the event of a failure of one of its systems such as those with the latest “by-wire” technologies. Handling of failures at a technical actuation level could involve many aspects, including time of operation after first fault, function/performance after first fault, and exposure after first fault. All of these and other issues are affected by software and electronic and mechanical hardware. Drive-by-wire and Automated Driving System Availability discusses the necessary systems approach required to address these issues. Establishing an industry path forward for these topics will simplify system development and provide a framework for consistent regulation and liability, which is an enabler for the launch of autonomous vehicles. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Unsettled Issues in Remote Operation for On-road Driving Automation

2021-12-15
EPR2021028
On-road vehicles equipped with driving automation features—where a human might not be needed for operation on-board—are entering the mainstream public space. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human remotely assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire vehicle-network-human now needs to work together safely, effectively, and practically. Unsettled Issues in Remote Operation for On-road Driving Automation highlights technical questions (e.g., network latency, bandwidth, cyber security) and human aspects (e.g., workload, attentiveness, situational awareness) of remote operation and introduces evolving solutions.
Research Report

Unsettled Issues Concerning Automated Driving Services in the Smart City Infrastructure

2021-12-15
EPR2021030
Information and communication technology is fundamentally changing the way we live and operate in cities, such as instant access to events, transportation, bookings, payments, and other services. At the same time, three “megatrends” in the automotive industry—self-driving, electrification, and advanced manufacturing technology—are enabling the design of innovative, application-specific vehicles that capitalize on city connectivity. Applications could countless; however, they also need to be safe and securely integrated into a city’s physical and digital infrastructure, and into the overall urban ecosystem. Unsettled Issues Concerning Automated Driving Services in the Smart City Infrastructure examines the current state of the industry, the developments in automated driving and robotics, and how these new urban, self-driving city applications are different. It also analyzes higher level challenges for urban applications.
Research Report

Unsettled Issues Concerning Urban Air Mobility Infrastructure

2021-11-15
EPR2021025
Urban air mobility (UAM) refers to urban transportation systems that move people by air. UAM offers the potential for reducing traffic congestion in cities and providing an integrated approach to urban mobility. With the emergence of electric vertical takeoff and landing (eVTOL) aircraft, drone technology, and the possibility of automated aircraft, interest in this topic has grown considerably for private sector solution providers—including aerospace and technology companies—as well as urban planners and transportation professionals. Unsettled Issues Concerning Urban Air Mobility Infrastructure discusses the infrastructure requirements to effectively integrate UAM services into the overarching urban transportation system to enable multimodal trips and complete origin to destination travel. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Research Report

Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles

2021-09-13
EPR2021019
Modern automobiles collect around 25 gigabytes of data per hour and autonomous vehicles are expected to generate more than 100 times that number. In comparison, the Apollo Guidance Computer assisting in the moon launches had only a 32-kilobtye hard disk. Without question, the breadth of in-vehicle data has opened new possibilities and challenges. The potential for accessing this data has led many entrepreneurs to claim that data is more valuable than even the vehicle itself. These intrepid data-miners seek to explore business opportunities in predictive maintenance, pay-as-you-drive features, and infrastructure services. Yet, the use of data comes with inherent challenges: accessibility, ownership, security, and privacy. Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles examines some of the pressing questions on the minds of both industry and consumers. Who owns the data and how can it be used?
Journal Article

It Takes a Village: A Case Study of Business Development and Innovation in a UAS/AUS Ecosystem to Address Critical Industry Challenges

2021-06-16
2021-01-1002
Entrepreneurial innovation that spurs economic development requires a collaborative cluster of cooperative effort, across a diverse ecosystem of partners. Literature provides resounding evidence to support the notion that an innovative, entrepreneurial ecosystem is critical to both successful economic development and industry sector growth. The UAS/AUS industry sector is a fast-growing sector across the United States, with regional leadership demonstrated in North Dakota, California, North Carolina, New York, Oklahoma, Texas and New Mexico. This case study is focused on investigating how the North Dakota autonomous systems ecosystem continues to evolves and develop mechanisms and partnerships to address industry pain points, facilitate cutting edge research, ensure high-quality UAS/AUS testing, and support an adaptive business development pipeline across the entrepreneurial life cycle.
Technical Paper

The Role of Safety Critical Architecture in an Evolving Ecosystem

2021-06-16
2021-01-1000
There are many industries where safety is a major, if not the primary, concern, such as aviation and nuclear power. These industries rely on many layers of standards for designing, developing, and deploying safety critical systems and technologies. While unmanned aircraft system (UAS) operations and UAS Traffic Management (UTM) are often touted as “safety critical”, the systems and technologies are not being held to the same standards as traditional aviation, with its long pedigree of safety. There are multiple reasons for this dichotomy. One such reason is that design assurance standards, such as DO-178 for software, do not fit with modern technology such as web-based communication and machine learning. At the architecture level, the federated approach to UTM has led to a void in the Systems Engineering process. Nobody “owns” the entire system and therefore nobody owns the Systems Engineering process where many safety related design decisions are traditionally made.
Journal Article

Safe Operations at Roadway Junctions - Design Principles from Automated Guideway Transit

2021-06-16
2021-01-1004
This paper describes a system-level view of a fully automated transit system comprising a fleet of automated vehicles (AVs) in driverless operation, each with an SAE level 4 Automated Driving System, along with its related safety infrastructure and other system equipment. This AV system-level control is compared to the automatic train control system used in automated guideway transit technology, particularly that of communications-based train control (CBTC). Drawing from the safety principles, analysis methods, and risk assessments of CBTC systems, comparable functional subsystem definitions are proposed for AV fleets in driverless operation. With the prospect of multiple AV fleets operating within a single automated mobility district, the criticality of protecting roadway junctions requires an approach like that of automated fixed-guideway transit systems, in which a guideway switch zone “interlocking” at each junction location deconflicts railway traffic, affirming safe passage.
Research Report

Unsettled Issues Regarding Autonomous Vehicles and Open-source Software

2021-04-21
EPR2021009
Unsettled Issues Regarding Autonomous Vehicles and Open-source Software introduces the impact of software in advanced automotive applications, the role of open-source communities in accelerating innovation, and the important topic of safety and cybersecurity. As electronic functionality is captured in software and a bigger percentage of that software is open-source code, some critical challenges arise concerning security and validation.
X