Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Automotive security solution using Hardware Security Module (HSM)

2024-10-17
2024-28-0037
., intelligent vehicles with advance safe and secure features but all these advancements come with significant threat of cybersecurity risk. Therefore, providing an automobile that is safe and secure through cyber-attack is also got equal importance. ...In this paper, we will discuss some of the challenges and key application of cybersecurity in the automotive sector. We will also discuss some possible approaches to address these challenges and enhance the security and privacy of automotive systems. ...Certain Automotive cybersecurity applications include Secure ECU communication, Digital signature generation and verification, Secure V2X, In-vehicle infotainment (IVI) security, Secure key management and storage, Secure remote vehicle access and control, and Secure over-the-air (OTA) updates.
Technical Paper

Harnessing Advanced Technologies for Swarm Operations within CJADC2

2024-09-16
2024-01-4116
This paper explores the pivotal role of specific technologies— AI, TSN, Sensor Fusion, Autonomous Systems, and Cybersecurity — and MOSA-based open standards in enabling effective swarm operations within CJADC2 to detect, analyze, and respond to swarm threats in real-time across diverse platforms and domains and ensure compatibility with existing command and control infrastructure.
Technical Paper

A Simulation Framework for Evaluating the Cybersecurity of Autonomous Ground Vehicles

2024-09-16
2024-01-4113
Autonomous ground vehicles (AGV) are comprised of a network of interconnected components including sensors, drive-by-wire actuators, and on-board computing. This on-vehicle network is often connected to a larger network which may include a ground station, other autonomous systems, or remote servers. While AGV share many features with other mobile networked devices like cell phones, the AGV computing and networking architecture may be vulnerable in ways that other systems are not, and the consequences of an attack may result in more severe physical consequences. In this paper, we present a systematic study of the network architecture of an AGV system, a cross-domain evaluation of possible attack vectors for AGV, and an implementation of a simulated cyberphysical test range that reveals the real-world consequences of cyberphysical attacks on AGV.
Technical Paper

Safety, ADAS, and Cybersecurity: Vol. 1

2024-05-03
EPRCOMPV152023
This chapter delves into the field of multi-agent collaborative perception (MCP) for autonomous driving: an area that remains unresolved. Current single-agent perception systems suffer from limitations, such as occlusion and sparse sensor observation at a far distance. To address this, three unsettled topics have been identified that demand immediate attention. First, it is crucial to establish normative communication protocols to facilitate seamless information sharing among vehicles. Second, collaboration strategies need to be defined, including identifying the need for specific collaboration projects, determining the collaboration partners, defining the content of collaboration, and establishing the integration mechanism. Finally, collecting sufficient data for MCP model training is vital. This includes capturing diverse modal data and labeling various downstream tasks as accurately as possible.
Technical Paper

Safety, ADAS, and Cybersecurity: Vol. 2

2024-05-03
EPRCOMPV162023
And as much as there are technical questions regarding network latency, bandwidth, cybersecurity, etc., aspects like human workload, attentiveness, and situational awareness also need to be clarified.
Technical Paper

Transportation Ecosystem and Autonomy: Vol. 2

2024-05-03
EPRCOMPV202023
And as much as there are technical questions regarding network latency, bandwidth, cybersecurity, etc., aspects like human workload, attentiveness, and situational awareness also need to be clarified.
Research Report

Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles

2024-04-22
EPR2024009
On the other hand, the potential risks associated with CAV deployment related to technical vulnerabilities are safety and cybersecurity issues that may arise from flawed hardware and software. Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...This report also highlights the importance of establishing robust cybersecurity protocols and fostering digital trust in these vehicles to ensure safe and secure deployment in our modern transportation system.
Technical Paper

Vehicle E/E Architecture and Key Technologies Enabling Software-Defined Vehicle

2024-04-09
2024-01-2035
This paper gives a definition of the SDV concept, provides views from different aspects, discusses the progress in vehicle E/E architecture, especially zone-based architecture with centralized computation, and various technologies including High-Performance Computing (HPC) platform, standardized vehicle software architecture, advanced onboard communication, Over-The-Air (OTA) update, and cybersecurity etc. that collectively enable the realization of SDV.
Technical Paper

The Operation Phase as the Currently Underestimated Phase of the (Safety and Legal) Product Lifecycle of Autonomous Vehicles for SAE L3/L4 – Lessons Learned from Existing European Operations and Development of a Deployment and Surveillance Blueprint

2023-12-29
2023-01-1906
Advanced Autonomous Vehicles (AV) for SAE Level 3 and Level 4 functions will lead to a new understanding of the operation phase in the overall product lifecycle. Regulations such as the EU Implementing Act and the German L4 Act (AFGBV) request a continuous field surveillance, the handling of critical E/E faults and software updates during operation. This is required to enhance the Operational Design Domain (ODD) during operation, offering Functions on Demand (FoD), by increasing software features within these autonomous vehicle systems over the entire digital product lifecycle, and to avoid and reduce downtime by a malfunction of the Autonomous Driving (AD) software stack.
Technical Paper

Access Control Requirements for Autonomous Robotic Fleets

2023-04-11
2023-01-0104
Access control enforces security policies for controlling critical resources. For V2X (Vehicle to Everything) autonomous military vehicle fleets, network middleware systems such as ROS (Robotic Operating System) expose system resources through networked publisher/subscriber and client/server paradigms. Without proper access control, these systems are vulnerable to attacks from compromised network nodes, which may perform data poisoning attacks, flood packets on a network, or attempt to gain lateral control of other resources. Access control for robotic middleware systems has been investigated in both ROS1 and ROS2. Still, these implementations do not have mechanisms for evaluating a policy's consistency and completeness or writing expressive policies for distributed fleets. We explore an RBAC (Role-Based Access Control) mechanism layered onto ROS environments that uses local permission caches with precomputed truth tables for fast policy evaluation.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Technical Paper

An Adaptable Security by Design Approach for Ensuring a Secured Remote Monitoring Teleoperation (RMTO) of an Autonomous Vehicle

2023-04-11
2023-01-0579
The separation of cybersecurity considerations in RMTO is barely considered, as so far, most available research and activities are mainly focused on AV. ...The main focus of this paper is addressing RMTO cybersecurity utilising an adaptable security-by-design approach, although security-by-design is still in the infant state within automotive cybersecurity. ...The main focus of this paper is addressing RMTO cybersecurity utilising an adaptable security-by-design approach, although security-by-design is still in the infant state within automotive cybersecurity. An adaptable security-by-design approach for RMTO covers Security Engineering Life-cycle, Logical Security Layered Concept, and Security Architecture.
Technical Paper

Deep Learning Based Automotive Requirements Analysis

2023-04-11
2023-01-0864
Automotive system functionalities spread over a wide range of sub-domains ranging from non-driving related components to complex autonomous driving related components. The requirements to design and develop these components span across software, hardware, firmware, etc. elements. The successful development of these components to achieve the needs from the stockholders requires accurate understanding and traceability of the requirements of these component systems. The high-level customer requirements transformation into low level granularity requires an efficient requirement engineer. The manual understanding of the customer requirements from the requirement documents are influenced by the context and the knowledge gap of the requirement engineer in understanding and transforming the requirements.
Technical Paper

Enhanced Penetration Testing for Automotive Cybersecurity

2022-12-16
2022-01-7123
Automotive electronics and enterprise IT are converging and thus open the doors for advanced hacking. With their immediate safety impact, cyberattacks on such systems will endanger passengers. Today, there are various methods of security verification and validation in the automotive industry. However, we realize that vulnerability detection is incomplete and inefficient with classic security testing. In this article, we show how an enhanced Grey-Box Penetration Test (GBPT) needs less test cases while being more effective in terms of coverage and indicating less false positives.
Technical Paper

Common Vulnerability Considerations as an Integral Part of the Automotive Cybersecurity Engineering Process

2022-10-05
2022-28-0304
To build secure systems of road vehicles, the cybersecurity engineering standard ISO21434[11] suggests the evaluation of vulnerabilities throughout engineering process, such as attack path analysis, system requirement stage, software architecture, design, and implementation and testing phases. ...With my analysis and practices, it is appropriate to include the common vulnerabilities that ought to be an integral part of the automotive cybersecurity engineering process. In this paper, the author would like to provide a list of vulnerabilities that might be a suggestion for threat analysis and risk assessment and propose two solutions that may be adopted directly in the V-model for security-relevant software development.
Technical Paper

Integrating Fuzz Testing into a CI Pipeline for Automotive Systems

2022-03-29
2022-01-0117
With the rapid development of connected and autonomous vehicles, more sophisticated automotive systems running large portions of software and implementing a variety of communication interfaces are being developed. The ever-expanding codebase increases the risk for software vulnerabilities, while at the same time the large number of communication interfaces make the systems more susceptible to be targeted by attackers. As such, it is of utmost importance for automotive organizations to identify potential vulnerabilities early and continuously in the development lifecycle in an automated manner. In this paper, we suggest a practical approach for integrating fuzz testing into a Continuous Integration (CI) pipeline for automotive systems. As a first step, we have performed a Threat Analysis and Risk Assessment (TARA) of a general E/E architecture to identify high-risk interfaces and functions.
X