Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Improved Run Time Error Analysis Using Formal Methods for Automotive Software - Improvement of Quality, Cost Effectiveness and Efforts to Proactive Defects Check

2021-09-22
2021-26-0459
Quality is what determines success or failure. If products are not error-free, reliable and robust, customers will be put off. Criticism is inevitable. Bosch is focusing on this theme and taking appropriate action to improve the quality of automotive software. Runtime errors most often refer to issues that appear during the execution of a program like buffer overflow issues and pointer access out of bounds. They are important to detect as they may cause critical safety, security or business operation concerns. They can potentially cause the critical systems of high-integrity applications to fail, leading to disastrous results and they have been blamed as the root cause of system failure in high-profile examples in automotive software. This has resulted in identifying run-time error detection as critical field of interest where safety-critical embedded software has to satisfy stringent quality requirements by all contemporary safety standards where no run-time errors must occur.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Research Report

Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles

2021-09-13
EPR2021019
Modern automobiles collect around 25 gigabytes of data per hour and autonomous vehicles are expected to generate more than 100 times that number. In comparison, the Apollo Guidance Computer assisting in the moon launches had only a 32-kilobtye hard disk. Without question, the breadth of in-vehicle data has opened new possibilities and challenges. The potential for accessing this data has led many entrepreneurs to claim that data is more valuable than even the vehicle itself. These intrepid data-miners seek to explore business opportunities in predictive maintenance, pay-as-you-drive features, and infrastructure services. Yet, the use of data comes with inherent challenges: accessibility, ownership, security, and privacy. Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles examines some of the pressing questions on the minds of both industry and consumers. Who owns the data and how can it be used?
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Technical Paper

The Role of Safety Critical Architecture in an Evolving Ecosystem

2021-06-16
2021-01-1000
There are many industries where safety is a major, if not the primary, concern, such as aviation and nuclear power. These industries rely on many layers of standards for designing, developing, and deploying safety critical systems and technologies. While unmanned aircraft system (UAS) operations and UAS Traffic Management (UTM) are often touted as “safety critical”, the systems and technologies are not being held to the same standards as traditional aviation, with its long pedigree of safety. There are multiple reasons for this dichotomy. One such reason is that design assurance standards, such as DO-178 for software, do not fit with modern technology such as web-based communication and machine learning. At the architecture level, the federated approach to UTM has led to a void in the Systems Engineering process. Nobody “owns” the entire system and therefore nobody owns the Systems Engineering process where many safety related design decisions are traditionally made.
Technical Paper

Safe Operations at Roadway Junctions - Design Principles from Automated Guideway Transit

2021-06-16
2021-01-1004
This paper describes a system-level view of a fully automated transit system comprising a fleet of automated vehicles (AVs) in driverless operation, each with an SAE level 4 Automated Driving System, along with its related safety infrastructure and other system equipment. This AV system-level control is compared to the automatic train control system used in automated guideway transit technology, particularly that of communications-based train control (CBTC). Drawing from the safety principles, analysis methods, and risk assessments of CBTC systems, comparable functional subsystem definitions are proposed for AV fleets in driverless operation. With the prospect of multiple AV fleets operating within a single automated mobility district, the criticality of protecting roadway junctions requires an approach like that of automated fixed-guideway transit systems, in which a guideway switch zone “interlocking” at each junction location deconflicts railway traffic, affirming safe passage.
Research Report

Unsettled Issues Regarding Autonomous Vehicles and Open-source Software

2021-04-21
EPR2021009
Unsettled Issues Regarding Autonomous Vehicles and Open-source Software introduces the impact of software in advanced automotive applications, the role of open-source communities in accelerating innovation, and the important topic of safety and cybersecurity. As electronic functionality is captured in software and a bigger percentage of that software is open-source code, some critical challenges arise concerning security and validation.
Technical Paper

Streamlined Process for Cloud Based Diagnostics Using Amazon Web Services

2021-04-06
2021-01-0159
In the age of 5G, the cloud constitutes a massive computational resource. Such capability is greatly underutilized, especially for the purpose of vehicle diagnostics and prognostics. Diagnostics and prognostics run mostly in the limited and cost sensitive electronic module of the vehicle. Utilizing vehicle connectivity, along with the massive capability of the cloud would allow the deployment of smarter algorithms that provide improved vehicle performance and operation management. In this paper, a streamlined process to develop and deploy off-board diagnostics is presented. The process included developing multiphysics digital twins and running the diagnostics off-board. It was demonstrated on a fleet of virtual Hybrid Electric Vehicles (HEV). The Digital Twin replica was created using Simulink® and Simscape®. The microcontroller used to demonstrate the diagnostic is a Raspberry Pi hardware running in real time.
Technical Paper

Integrating Fuzz Testing into the Cybersecurity Validation Strategy

2021-04-06
2021-01-0139
Therefore, modern cybersecurity validation is highly stressed for finding security vulnerabilities and robustness issues early and systematically at every stage of the product development process. ...The integration of a sophisticated fuzz testing program within the overall cybersecurity validation strategy allows for accommodating towards these challenging demands. In this paper, we review a general automotive cybersecurity engineering process containing functional testing, vulnerability scanning and penetration testing, and highlight shortcomings that can be complemented by fuzz testing. ...In this paper, we review a general automotive cybersecurity engineering process containing functional testing, vulnerability scanning and penetration testing, and highlight shortcomings that can be complemented by fuzz testing.
Technical Paper

Cybersecurity Metrics for Automotive Systems

2021-04-06
2021-01-0138
With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the upcoming ISO/SAE 21434 cybersecurity standard for automotive systems and cybersecurity regulations in UNECE WP.29, it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles. ...Cybersecurity for automotive systems is challenging and one of the major challenges is how to measure this specific system property. ...With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the upcoming ISO/SAE 21434 cybersecurity standard for automotive systems and cybersecurity regulations in UNECE WP.29, it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles.
Technical Paper

Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software

2021-04-06
2021-01-0183
Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification.
Technical Paper

Leveraging Systems Theoretic Process Analysis (STPA) for Efficient ISO 26262 Compliance

2021-04-06
2021-01-0067
There has been a significant increase - both in the content of electronics and software in vehicles as well as in recalls attributed to these components and systems. The advanced features, including the onset of autonomous vehicles accompanied by millions of lines of code in software have exponentially increased the complexity of vehicle systems and decreased effectiveness of many of the safety analysis techniques being used to identify hazards and safety requirements - for example, FMEA, FTA, ETA, etc.- which were invented decades before the existence of complexities of such magnitude. This paper examines a new hazard identification technique formalized by Nancy G Leveson of Massachusetts Institute of Technology (MIT), USA in her book “Engineering a Safer World” and further elaborated in the STPA Handbook co-authored with John P Thomas in March 2018.
Technical Paper

xEV Propulsion System Control-Overview and Current Trends

2021-04-06
2021-01-0781
Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Technical Paper

THARA - A Framework to Align the Functional Safety and Security Process in Automotive Domain

2021-04-06
2021-01-0148
The underlying systems are susceptible to safety and cybersecurity attacks as the involved ECUs are interconnected. The security attacks can lead to disrupting the safe operation of the vehicle while causing injury to the passengers. ...Consequently, the functional safety requirements and cybersecurity requirements can be aligned with each other. In this paper, a case study of the application of the THARA framework is presented through the risk analysis of safety and security threats applicable to the rear-view camera (RVC) feature of the vehicle.
Journal Article

Implementation Methodologies for Simulation as a Service (SaaS) to Develop ADAS Applications

2021-04-06
2021-01-0116
Over the years, the complexity of autonomous vehicle development (and concurrently the verification and validation) has grown tremendously in terms of component-, subsystem- and system-level interactions between autonomy and the human users. Simulation-based testing holds significant promise in helping to identify both problematic interactions between component-, subsystem-, and system-levels as well as overcoming delays typically introduced by the default full-scale on-road testing. Software in Loop (SiL) simulation is utilized as an intermediate step towards software deployment for autonomous vehicles (AV) to make them reliable. SiL efforts can help reduce the resources required for successful deployment by helping to validate the software for millions of road miles. A key enabler for accelerating SiL processes is the ability to use Simulation as a Service (SaaS) rather than just isolated instances of software.
Technical Paper

Technical Trends of the Intelligent Connected Vehicle and Development Stage Division for Freeway Traffic Control

2020-12-30
2020-01-5134
It is deemed that currently the intelligent connected vehicle (ICV) is in its early stage of development, and it will go through multiple development stages in the future to realize its final goal—autonomous driving. Based on the existing ICV researches, this paper believes that ICV can be used to improve the efficiency and safety of freeway. The current research of ICV has two main directions: one focuses on the traffic flow characteristics of vehicles with different attributes, the other is concerned with using ICV to reduce congestion. From the policies issued by countries around the world and the development plans promoted by major vehicle manufacturers, the future development trends and challenges of ICV are analyzed. ICV must overcome all the shortcomings to achieve its final goal, including insufficient hardware capabilities or excessive cost, and the degree of intelligence that needs to be improved.
Technical Paper

Development and Research of Environment Perception Technology in Intelligent Networked Transportation System

2020-12-30
2020-01-5152
As an important part of intelligent driving vehicles and intelligent networked transportation systems, environmental perception technology can provide important decision-making basis for the overall planning of intelligent driving vehicles and transportation systems. This paper reviews the current research on environment perception technology in the current intelligent networked transportation system, and analyzes four key research directions and related progress of environmental sensing technologies, including single sensor device, high-precision map, multi-sensor information fusion and vehicle-road collaboration. On the basis of analyzing and summarizing existing related research, this article elaborates the development trend and key directions of future environmental perception technology, including the integration of deep learning, vehicle-road integration, information security and multi-dimensional perception technology related development directions.
X