Refine Your Search

Topic

Search Results

Event

Program - Government/Industry Meeting

2021-09-20
The Government/Industry Meeting technical program is designed to provide an open forum to discuss the critical impacts that legislation has on vehicle design from R&D to customer acceptance.
Standard

CAN FD Data Link Layer

2021-07-16
CURRENT
J1939-22_202107
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Technical Paper

Safe Operations at Roadway Junctions - Design Principles from Automated Guideway Transit

2021-06-16
2021-01-1004
This paper describes a system-level view of a fully automated transit system comprising a fleet of automated vehicles (AVs) in driverless operation, each with an SAE level 4 Automated Driving System, along with its related safety infrastructure and other system equipment. This AV system-level control is compared to the automatic train control system used in automated guideway transit technology, particularly that of communications-based train control (CBTC). Drawing from the safety principles, analysis methods, and risk assessments of CBTC systems, comparable functional subsystem definitions are proposed for AV fleets in driverless operation. With the prospect of multiple AV fleets operating within a single automated mobility district, the criticality of protecting roadway junctions requires an approach like that of automated fixed-guideway transit systems, in which a guideway switch zone “interlocking” at each junction location deconflicts railway traffic, affirming safe passage.
Standard

CAN FD Data Link Layer

2021-03-22
HISTORICAL
J1939-22_202103
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Magazine

SAE Truck & Off-Highway Engineering: August 2020

2020-08-06
Big future for e-axles, advanced motors Top transmission engineers claim driveline electrification will transform everything from all-wheel drive to Class 8 tractor-trailers. Big data's benefits keep a-comin' Gigabytes of data are being collected and increasingly mined to improve field operations, maintenance and even vehicle design. Transformative times Despite a challenging climate, technology development progresses - as does the sharing of innovative ideas - virtually. Editorial Zeroing in on zero emissions Softing envisions secure, reliable predictive maintenance Reconstructing accidents in the ADAS age Paving the way to improved truck fuel efficiency Nikola looks to accelerate production, hydrogen infrastructure Mecalac designs unique-pivoting swing loader Q&A' Horiba's Joshua Israel discusses complex regulatory landscape's impact on commercial-vehicle development and shift to electrification.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Journal Article

Chip and Board Level Digital Forensics of Cummins Heavy Vehicle Event Data Recorders

2020-04-14
2020-01-1326
Crashes involving Cummins powered heavy vehicles can damage the electronic control module (ECM) containing heavy vehicle event data recorder (HVEDR) records. When ECMs are broken and data cannot be extracted using vehicle diagnostics tools, more invasive and low-level techniques are needed to forensically preserve and decode HVEDR data. A technique for extracting non-volatile memory contents using non-destructive board level techniques through the available in-circuit debugging port is presented. Additional chip level data extraction techniques can also provide access to the HVEDR data. Once the data is obtained and preserved in a forensically sound manner, the binary record is decoded to reveal typical HVDER data like engine speed, vehicle speed, accelerator pedal position, and other status data. The memory contents from the ECM can be written to a surrogate and decoded with traditional maintenance and diagnostic software.
Research Report

Unsettled Technology Opportunities for Vehicle Health Management and the Role for Health-Ready Components

2020-03-17
EPR2020003
Game-changing opportunities abound for the application of vehicle health management (VHM) across multiple transportation-related sectors, but key unresolved issues continue to impede progress. VHM technology is based upon the broader field of advanced analytics. Much of traditional analytics efforts to date have been largely descriptive in nature and offer somewhat limited value for large-scale enterprises. Analytics technology becomes increasingly valuable when it offers predictive results or, even better, prescriptive results, which can be used to identify specific courses of action. It is this focus on action which takes analytics to a higher level of impact, and which imbues it with the potential to materially impact the success of the enterprise. Artificial intelligence (AI), specifically machine learning technology, shows future promise in the VHM space, but it is not currently adequate by itself for high-accuracy analytics.
Magazine

SAE Truck & Off-Highway Engineering: February 2020

2020-02-01
ICE advances Engine developers employ revised electronic architectures, mechanical tweaks to boost fuel efficiency, performance of internal-combustion engines. Autonomous construction sites Equipment makers are testing the emerging technologies required to advance automation beyond individual machines. Modeling electric motors How to develop a traction drive using a multiphysics-based approach with 3D modeling and simulation. Solving the "telehandler problem" Two-stage overcenter valves create stability in machines with highly dynamic loads. Engineering the world's fastest tractor JCB worked with design and engineering specialists to build a spectacular speed record-breaker that topped 150 mph.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Article

MOBI rolls out the first blockchain-enabled Vehicle Identity (VID) mobility standard

2019-07-18
The Mobility Open Blockchain Initiative – a global nonprofit working to create standards in blockchain, distributed ledgers, and related technologies for consumers, smart cities, and mobility – has launched the industry's first vehicle identification (VID) standard incorporating blockchain technology into a digital vehicle identification system.
Magazine

SAE Truck & Off-Highway Engineering: April 2019

2019-04-04
Connections dig deeper More aspects of vehicle operation are being improved by leveraging cellular links. An OBE for the SAE Meet Paul Mascarenas-SAE International's 2019 president. He's a staunch advocate for professional development for engineers, amid the mobility industry's transformation. Advancing aftertreatment Engineers push for more efficient, cost-effective, and smaller aftertreatment systems for off-highway diesel engines, addressing challenges such as better particulate filtering and low-temp NOx conversion. Developing for defense Suppliers to the commercial vehicle segment optimize-read: ruggedize-their product offerings for the tougher terrain encountered by military vehicles. Going digital & electric @ bauma 2019 Digitalization and electrification are dominant themes in the equipment and technology being revealed at this year's largest trade show for construction and mining. Editorial Bigger barrier to CBEVs: Batteries or infrastructure?
Journal Article

Cybersecurity Considerations for Heavy Vehicle Event Data Recorders

2018-12-14
Abstract Trust in the digital data from heavy vehicle event data recorders (HVEDRs) is paramount to using the data in legal contests. Ensuring the trust in the HVEDR data requires an examination of the ways the digital information can be attacked, both purposefully and inadvertently. The goal or objective of an attack on HVEDR data will be to have the data omitted in a case. To this end, we developed an attack tree and establish a model for violating the trust needed for HVEDR data. The attack tree provides context for mitigations and also for functional requirements. A trust model is introduced as well as a discussion on what constitutes forensically sound data. The main contribution of this article is an attack tree-based model of both malicious and accidental events contributing to compromised event data recorder (EDR) data. A comprehensive list of mitigations for HVEDR systems results from this analysis.
X