Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Automated Vehicle Safety Multi-Agent, Functional, SOTIF, and Cybersecurity

2021-11-10
You’ll learn the main attributes of safety as applied to automated vehicles, including the four types of safety: Functional Safety, Safety of the Intended Functionality (SOTIF), Multi-agent safety, and safety involved in cybersecurity attacks. The discussion will enable participants to conceive of the various applicable design aspects of safety, clarify the role of SOTIF, multi-agent safety, and cybersecurity safety and address the development of multi-agent safety using a probabilistic and stochastic framework.
Technical Paper

Is the Age of the Automotive V-model Over?

2021-04-06
2021-01-0065
The V-model has been central to rigorous vehicle engineering for decades. However, there are three factors that could be used to argue whether the V-model is still a good fit for the automotive industry as we move into the connected autonomous vehicle (CAV) era. The first is the shift during development towards simulation to reduce costs, which means that testing runs can be done quickly, reminiscent of the software development AGILE methodology. The second is the need to monitor vehicles after production due to ever-increasing software functionality on a vehicle. This is for two reasons: firstly, the software over the lifetime of the vehicle would need updating, and secondly, monitoring is required for incident response in the event of a cyber-attack. Since the V-model traditionally doesn't consider the product after the vehicle enters the market, there is an absence of a widely accepted model to follow.
Technical Paper

Secure CAN Logging

2021-04-06
2021-01-0136
However, CAN protocols are vulnerable from a cybersecurity perspective in that they have no mechanism for authentication or authorization. Attacks on vehicle CAN systems present a risk to driver privacy and possibly driver safety. ...Therefore, developing new tools and techniques to detect cybersecurity threats within CAN networks is a critical research topic. A key component of this research is compiling a large database of representative CAN data from operational vehicles on the road.
Technical Paper

Zero-Day Attack Defenses and Test Framework for Connected Mobility ECUs

2021-04-06
2021-01-0141
Recent developments in the commercialization of mobility services have brought unprecedented connectivity to the automotive sector. While the adoption of connected features provides significant benefits to vehicle owners, adversaries may leverage zero-day attacks to target the expanded attack surface and make unauthorized access to sensitive data. Protecting new generations of automotive controllers against malicious intrusions requires solutions that do not depend on conventional countermeasures, which often fall short when pitted against sophisticated exploitation attempts. In this paper, we describe some of the latent risks in cur-rent automotive systems along with a well-engineered multi-layer defense strategy. Further, we introduce a novel and comprehensive attack and performance test framework which considers state-of-the-art memory corruption attacks, counter-measures and evaluation methods.
Training / Education

Introduction to Highly Automated Vehicles

2021-04-05
Every year, the U.S. on average, experiences more than 34,000 traffic deaths and over 5 million vehicle crashes. While the trend in traffic deaths has been generally downward for the past decade, most of this reduction has been the result of optimizing passive occupant crash protection systems such as seatbelts and airbags. Highly automated vehicle's (HAV's) offer the potential to significantly reduce vehicle crashes by perceiving a dangerous situation before the crash has occurred and supporting the human driver with proactive warnings and in some cases active interventions to avoid or mitigate the crash.
Book

Autonomous Vehicle QuickStart Primer - A Business and Technology Survey of the Autonomous Vehicle Space

2021-01-21
The Autonomous Vehicle QuickStart Primer by Dr. Rahul Razdan is valuable for anyone connected to the transportation industry who wants a basic understanding of the impact of the new wave of electronics and software technology that’s about to transform this world. The book is aimed at professionals who seek insights into the fundamentals of AV technology, business, and regulation, but it doesn’t cover deep engineering and is not highly technical. Instead, it offers a firm foundation of the megatrends driving this technological revolution, the way these technologies intersect with the current transportation system, and the potential for disruptive change. The book takes a look at challenges in the areas of public policy, regulations, safety, legal, and insurance frameworks that are currently being debated, and the pilot programs being implemented in some areas.
Technical Paper

Technical Trends of the Intelligent Connected Vehicle and Development Stage Division for Freeway Traffic Control

2020-12-30
2020-01-5134
It is deemed that currently the intelligent connected vehicle (ICV) is in its early stage of development, and it will go through multiple development stages in the future to realize its final goal—autonomous driving. Based on the existing ICV researches, this paper believes that ICV can be used to improve the efficiency and safety of freeway. The current research of ICV has two main directions: one focuses on the traffic flow characteristics of vehicles with different attributes, the other is concerned with using ICV to reduce congestion. From the policies issued by countries around the world and the development plans promoted by major vehicle manufacturers, the future development trends and challenges of ICV are analyzed. ICV must overcome all the shortcomings to achieve its final goal, including insufficient hardware capabilities or excessive cost, and the degree of intelligence that needs to be improved.
Technical Paper

Service Analysis of Autonomous Driving

2020-12-30
2020-01-5194
Autonomous driving represents the ultimate goal of future automobile development. As a collaborative application that integrates vehicles, road infrastructure, network and cloud, autonomous driving business requires a high-degree dynamic cooperation among multiple resources such as data, computing and communications that are distributed throughout the system. In order to meet the anticipated high demand for resources and performance requirements of autonomous driving, and to ensure the safety and comfort of the vehicle users and pedestrians, a top concern of autonomous driving is to understand the system requirements for resources and conduct an in-depth analysis of the autonomous driving business. In this context, this paper presents a comprehensive analysis of the typical business for autonomous driving and establishes an analysis model for five common capabilities, i.e. collection, transmission, intelligent computing, human-machine interaction (HMI), and security.
Research Report

Unsettled Topics Concerning Human and Autonomous Vehicle Interaction

2020-12-18
EPR2020025
This report examines the current interaction points between humans and autonomous systems, with a particular focus on advanced driver assistance systems (ADAS), the requirements for human-machine interfaces as imposed by human perception, and finally, the progress being made to close the gap. Autonomous technology has the potential to benefit personal transportation, last-mile delivery, logistics, and many other mobility applications enormously. In many of these applications, the mobility infrastructure is a shared resource in which all the players must cooperate. In fact, the driving task has been described as a “tango” where we—as humans—cooperate naturally to enable a robust transportation system. Can autonomous systems participate in this tango? Does that even make sense? And if so, how do we make it happen?
Magazine

Autonomous Vehicle Engineering: November 2020

2020-11-05
Editorial Fool Self-Driving The Navigator The end of vehicle ownership Sanitary Solutions for AVs Gentex engineers are bridging mobility and medical technologies to tackle vital public-health issues of vehicle cabin cleanliness. 'Software, Start Your Engines' The 2021 Indy Autonomous Challenge is a high-speed laboratory for advancing automated driving. Getting to the 'Core' of AV Thermal Management Data-gobbling processors require new cooling solutions - and the AV industry needs standards, says a veteran engineer. Autonomy Takes Off-highway Integrating automation systems in mining, agricultural and construction machines can increase safety and productivity in the field and bring significant economic benefits. Boaring in on Vehicle-to-Animal Road Safety Researchers are using micro-Doppler radar, neural nets and machine learning to protect drivers from the wild critters that enter the road.
Research Report

Unsettled Topics Concerning Autonomous Public Transportation Systems

2020-10-30
EPR2020020
With billions of dollars of investment and events like DARPA’s Grand Challenges automated driving technology has been making its way toward commercialization. While the enabling technology for SAE Level 4 and 5 automated vehicles (AV) has not yet matured, specific restricted-use models such as “robo-taxis” and automated truck convoying show great promise. Now, cities are across the world are looking to AVs to solve their public transportation issues. With low speeds and fixed route, public transportation is an ideal application for AVs. From a business angle, AVs could leverage existing public transport models and infrastructure while providing superior quality of service for disadvantaged communities. Yet, dense urban environments—which would benefit from automated transportation the most—present unique challenges and public sector requirements. This SAE EDGE™ Research Report by Dr.
Journal Article

A Distributed “Black Box” Audit Trail Design Specification for Connected and Automated Vehicle Data and Software Assurance

2020-10-14
Abstract Automotive software is increasingly complex and critical to safe vehicle operation, and related embedded systems must remain up to date to ensure long-term system performance. Update mechanisms and data modification tools introduce opportunities for malicious actors to compromise these cyber-physical systems, and for trusted actors to mistakenly install incompatible software versions. A distributed and stratified “black box” audit trail for automotive software and data provenance is proposed to assure users, service providers, and original equipment manufacturers (OEMs) of vehicular software integrity and reliability. The proposed black box architecture is both layered and diffuse, employing distributed hash tables (DHT), a parity system and a public blockchain to provide high resilience, assurance, scalability, and efficiency for automotive and other high-assurance systems.
Magazine

Aerospace & Defense Technology: October 2020

2020-10-01
The Role of Autonomous Unmanned Ground Vehicle Technologies in Defense Applications Information Warfare - Staying Protected at the Edge Designing Connectivity Solutions for an Electric Aircraft Future Redesigning the Systems Engineering Process to Speed Development of E-Propulsion Aircraft Four RF Technology Trends You Need to Know for Satellite Communication Device Design Manufacturer Reduces Risk and Improves Quality of Military Radar Receivers Instrumentation for Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems Precision data acquisition is required to generate a comprehensive set of measurements of the blade surface pressures, pitch link loads, hub loads, rotor wakes and performance of high-speed single-rotor and compound-rotor systems to support the development of next-generation rotorcraft.
Magazine

Automotive Engineering: October 2020

2020-10-01
FEV and the Art of EV Testing The legendary powertrain-engineering group has expanded its global footprint into EV testing and development to keep pace with changing technologies and customer demand. EVs expand the testing envelope Horiba builds on its core test-systems expertise as it pivots to battery packs, e-motors, fuel cells and their ancillary technologies. Symphony in the key of C8 Tenneco and GM solve multiple technical challenges to engineer the mid-engine Corvette's sweet-sounding active exhaust system. More air for the hydrogen fuel cell New electric-blower technology aims to enhance HFC efficiency. Aeristech engineering boss Luke Read explains.
Best Practice

AVSC Best Practice for Data Collection for Automated Driving System-Dedicated Vehicles (ADS-DVs) to Support Event Analysis

2020-09-23
CURRENT
AVSC00004202009
As technology and functionality of vehicle systems change, so do data recording needs. In ADS-dedicated vehicles (DV), the ADS perceives the environment and handles vehicle motion control, i.e., the dynamic driving task (DDT), as described in SAE J3016. When an ADS takes the place of a human driver, its sensing, processing, and control systems necessitate new considerations for data recording. Data recording is important to crash reconstruction, system performance investigations, and event analysis. It enables industry-wide improvements in ADS safety. This best practice makes recommendations for the ADS-DV data needed to support: (1) information about what the ADS "saw" and "did" and (2) identify the technology-relevant factors that contributed to the event.
Magazine

Autonomous Vehicle Engineering: September 2020

2020-09-03
Editorial AV lidar enters a new reality The Navigator UNECE takes first step toward AV regulation Special Delivery - by 'Bot Michigan start-up Refraction AI aims to be the go-to for last-mile, semi-autonomous, all-weather delivery robots. Lidar Infiltrates ADAS Once considered a necessity only in fully autonomous vehicles, lidar sensors are now being evaluated for lower-level driver-assistance systems. Training Data-hungry AI Algorithms Large-scale data refinement is key to bringing more sophisticated automated-driving functions to series production. Simulation's Next Generation Do autonomous-vehicle developers have their simulation strategies all wrong? Some experts think so - but suggest there's a practical solution. Marelli's COVID-killing HVAC Insert With big implications for shared mobility, a new photocatalytic cabin-air purifier claims to kill viruses - including COVID-19. Is Ground-penetrating Radar Next for AV Sensing?
X