Refine Your Search

Search Results

Viewing 1 to 6 of 6
Research Report

Unsettled Topics Concerning Airworthiness Cybersecurity Regulation

2020-08-31
EPR2020013
Its extensive application of data networks, including enhanced external digital communication, forced the Federal Aviation Administration (FAA), for the first time, to set “Special Conditions” for cybersecurity. In the 15 years that ensued, airworthiness regulation followed suit, and all key rule-, regulation-, and standard-making organizations weighed in to establish a new airworthiness cybersecurity superset of legislation, regulation, and standardization. ...In the 15 years that ensued, airworthiness regulation followed suit, and all key rule-, regulation-, and standard-making organizations weighed in to establish a new airworthiness cybersecurity superset of legislation, regulation, and standardization. The resulting International Civil Aviation Organization (ICAO) resolutions, US and European Union (EU) legislations, FAA and European Aviation Safety Agency (EASA) regulations, and the DO-326/ED-202 set of standards are already the de-facto, and soon becoming the official, standards for legislation, regulation, and best practices, with the FAA already mandating it to a constantly growing extent for a few years now—and EASA adopting the set in its entirety in July 2020.
Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Technical Paper

Test Method for the SAE J3138 Automotive Cyber Security Standard

2020-04-14
2020-01-0142
This paper will provide an Overview of Automotive Cyber Security Standards related to the Vehicle OBD-II Data Link. The OBD-II Connector Attack Tree is described with respect to the SAE J3138 requirements for Intrusive vs. non-Intrusive Services. A proposed test method for SAE J3138 is described including hardware and software scripting. Finally, example test results are reviewed and compared with a potential threat boundary.
Journal Article

Improvement of the Resilience of a Cyber-Physical Remote Diagnostic Communication System against Cyber Attacks

2019-04-02
2019-01-0112
In the near future, vehicles will operate autonomously and communicate with their environment. This communication includes Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) communication, and comunication with cloud-based servers (V2C). To improve the resilience of remote diagnostic communication between a vehicle and external test equipment against cyberattacks, it is imperative to understand and analyze the functionality and vulnerability of each communication system component, including the wired and wireless communication channels. This paper serves as a continuation of the SAE Journal publication on measures to prevent unauthorized access to the in-vehicle E/E system [9], explains the components of a cyber-physical system (CPS) for remote diagnostic communication, analyzes their vulnerability against cyberattacks and explains measures to improve the resiliance.
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
X