Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Technical Paper

Digital-Twin-Based Approaches and Applications for Improving Automotive Cybersecurity in Different Lifecycle Stages

2023-04-11
2023-01-0036
With the increasing connectivity and complexity of modern automobiles, cybersecurity has become one of the most important properties of a vehicle. Various strategies have been proposed to enhance automotive cybersecurity. ...Various strategies have been proposed to enhance automotive cybersecurity. Digital twin (DT), regarded as one of the top 10 strategic technology trends by Gartner in 2018 and 2019, establishes digital representations in a virtual world and raises new ideas to benefit real-life objects. ...In this paper, we explored the possibility of using digital twin technology to improve automotive cybersecurity. We designed two kinds of digital twin models, named mirror DT and autonomous DT, and corresponding environments to support cybersecurity design, development, and maintenance in an auto’s lifecycle, as well as technique training.
Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Research Report

Impact of Electric Vehicle Charging on Grid Energy Buffering

2022-09-26
EPR2022022
Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering required by a VRE-intensive grid.
Technical Paper

Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software

2021-04-06
2021-01-0183
Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification.
X