Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Research Report

Unsettled Topics in Automated Vehicle Data Sharing for Verification and Validation Purposes

Unsettled Topics in Automated Vehicle Data Sharing for Verification and Validation Purposes discusses the unsettled issue of sharing the terabytes of driving data generated by Automated Vehicles (AVs) on a daily basis. Perception engineers use these large datasets to analyze and model the automated driving systems (ADS) that will eventually be integrated into future “self-driving” vehicles. However, the current industry practices of collecting data by driving on public roads to understand real-world scenarios is not practical and will be unlikely to lead to safe deployment of this technology anytime soon. Estimates show that it could take 400 years for a fleet of 100 AVs to drive enough miles to prove that they are as safe as human drivers.
Research Report

Unsettled Impacts of Integrating Automated Electric Vehicles into a Mobility-as-a-Service Ecosystem and Effects on Traditional Transportation and Ownership

The current business model of the automotive industry is based on individual car ownership, yet new ridesharing companies such as Uber and Lyft are well capitalized to invest in large, commercially operated, on-demand mobility service vehicle fleets. Car manufacturers like Tesla want to incorporate personal car owners into part-time fleet operation by utilizing the company’s fleet service. These robotaxi fleets can be operated profitably when the technology works in a reliable manner and regulators allow driverless operation. Although Mobility-as-a-Service (MaaS) models of private and commercial vehicle fleets can complement public transportation models, they may contribute to lower public transportation ridership and thus higher subsidies per ride. This can lead to inefficiencies in the utilization of existing public transportation infrastructure.
Journal Article

Chip and Board Level Digital Forensics of Cummins Heavy Vehicle Event Data Recorders

Crashes involving Cummins powered heavy vehicles can damage the electronic control module (ECM) containing heavy vehicle event data recorder (HVEDR) records. When ECMs are broken and data cannot be extracted using vehicle diagnostics tools, more invasive and low-level techniques are needed to forensically preserve and decode HVEDR data. A technique for extracting non-volatile memory contents using non-destructive board level techniques through the available in-circuit debugging port is presented. Additional chip level data extraction techniques can also provide access to the HVEDR data. Once the data is obtained and preserved in a forensically sound manner, the binary record is decoded to reveal typical HVDER data like engine speed, vehicle speed, accelerator pedal position, and other status data. The memory contents from the ECM can be written to a surrogate and decoded with traditional maintenance and diagnostic software.
Technical Paper

Buckendale Lecture Series: Transformational Technologies Reshaping Transportation—A Government Perspective

Transportation departments are under-going a dramatic transformation, shifting from organizations focused primarily on building roads to a focus on mobility for all users. The transformation is the result of rapidly advancing autonomous vehicle technology and personal telecommunication technology. These technologies provide the opportunity to dramatically improve safety, mobility, and economic opportunity for society and industry. Future generations of engineers and other transportation professionals have the opportunity to be part of that societal change. This paper will focus on the technologies state DOT’s and the private sector are researching, developing, and deploying to promote the future of mobility and improved efficiency for commercial trucking through advancements in truck platooning, self-driving long-haul trucking, and automated last mile distribution networks.