Refine Your Search

Search Results

Viewing 1 to 3 of 3
Research Report

Unsettled Issues Facing Automated Vehicles and Insurance

2020-08-05
EPR2020015
This SAE EDGE™ Research Report explores how the deployment of automated vehicles (AVs) will affect the insurance industry and the principles of liability that underly the structure of insurance in the US. As we trade human drivers for suites of sensors and computers, who (or what) is responsible when there is a crash? The owner of the vehicle? The automaker that built it? The programmer that wrote the code? Insurers have over 100 years of experience and data covering human drivers, but with only a few years’ worth of information on AVs – how can they properly predict the true risks associated with their deployment? Without an understanding of the nature and risks of AVs, how can the government agencies that regulate the insurance industry provide proper oversight? Do the challenges AVs present require a total reworking of our insurance and liability systems, or can our current structures be adapted to fit them with minor modifications?
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Technical Paper

Recognizing Manipulated Electronic Control Units

2015-04-14
2015-01-0202
Combatting the modification of automotive control systems is a current and future challenge for OEMs and suppliers. ‘Chip-tuning’ is a manifestation of manipulation of a vehicle's original setup and calibration. With the increase in automotive functions implemented in software and corresponding business models, chip tuning will become a major concern. Recognizing and reporting of tuned control units in a vehicle is required for technical as well as legal reasons. This work approaches the problem by capturing the behavior of relevant control units within a machine learning system called a recognition module. The recognition module continuously monitors vehicle's sensor data. It comprises a set of classifiers that have been trained on the intended behavior of a control unit before the vehicle is delivered. When the vehicle is on the road, the recognition module uses the classifier together with current data to ascertain that the behavior of the vehicle is as intended.
X