Refine Your Search

Topic

Search Results

Technical Paper

Cybersecurity Metrics for Automotive Systems

2021-04-06
2021-01-0138
We present in this paper the context surrounding cybersecurity metrics from literature and highlight the first potential steps towards a common understanding of how much cybersecurity is enough. With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the new ISO/SAE 21434 cybersecurity standard for automotive systems and cybersecurity regulations in UNECE WP.29, it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles. ...With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the new ISO/SAE 21434 cybersecurity standard for automotive systems and cybersecurity regulations in UNECE WP.29, it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles. ...Cybersecurity for automotive systems is challenging and one of the major challenges is how to measure this system property.
Technical Paper

Challenges in Integrating Cybersecurity into Existing Development Processes

2020-04-14
2020-01-0144
Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Research Report

Unsettled Topics Concerning Airworthiness Cybersecurity Regulation

2020-08-31
EPR2020013
Its extensive application of data networks, including enhanced external digital communication, forced the Federal Aviation Administration (FAA), for the first time, to set “Special Conditions” for cybersecurity. In the 15 years that ensued, airworthiness regulation followed suit, and all key rule-, regulation-, and standard-making organizations weighed in to establish a new airworthiness cybersecurity superset of legislation, regulation, and standardization. ...In the 15 years that ensued, airworthiness regulation followed suit, and all key rule-, regulation-, and standard-making organizations weighed in to establish a new airworthiness cybersecurity superset of legislation, regulation, and standardization. The resulting International Civil Aviation Organization (ICAO) resolutions, US and European Union (EU) legislations, FAA and European Aviation Safety Agency (EASA) regulations, and the DO-326/ED-202 set of standards are already the de-facto, and soon becoming the official, standards for legislation, regulation, and best practices, with the FAA already mandating it to a constantly growing extent for a few years now—and EASA adopting the set in its entirety in July 2020.
Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. ...Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles. ...As the domain geared up for the cybersecurity challenges, they leveraged experiences from many other domains, but must face several unique challenges.
Technical Paper

Information Security Risk Management of Vehicles

2018-04-03
2018-01-0015
The results of this work is allowed to identify a number of cybersecurity threats of the automated security-critical automotive systems, which reduces the efficiency of operation, road safety and system safety. ...According to the evaluating criterion of board electronics, the presence of poorly-protected communication channels, the 75% of the researched modern vehicles do not meet the minimum requirements of cybersecurity due to the danger of external blocking of vital systems. The revealed vulnerabilities of the security-critical automotive systems lead to the necessity of developing methods for mechanical and electronic protection of the modern vehicle. ...The law of normal distribution of the mid-points of the expert evaluation of the cyber-security of a modern vehicle has been determined. Based on the system approach, ranking of the main cybersecurity treats is performed.
Technical Paper

Deep Learning based Real Time Vulnerability fixes Verification Mechanism for Automotive firmware/Software

2021-04-06
2021-01-0183
Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification.
Technical Paper

Service Analysis of Autonomous Driving

2020-12-30
2020-01-5194
Autonomous driving represents the ultimate goal of future automobile development. As a collaborative application that integrates vehicles, road infrastructure, network and cloud, autonomous driving business requires a high-degree dynamic cooperation among multiple resources such as data, computing and communications that are distributed throughout the system. In order to meet the anticipated high demand for resources and performance requirements of autonomous driving, and to ensure the safety and comfort of the vehicle users and pedestrians, a top concern of autonomous driving is to understand the system requirements for resources and conduct an in-depth analysis of the autonomous driving business. In this context, this paper presents a comprehensive analysis of the typical business for autonomous driving and establishes an analysis model for five common capabilities, i.e. collection, transmission, intelligent computing, human-machine interaction (HMI), and security.
Technical Paper

Technical Trends of the Intelligent Connected Vehicle and Development Stage Division for Freeway Traffic Control

2020-12-30
2020-01-5134
It is deemed that currently the intelligent connected vehicle (ICV) is in its early stage of development, and it will go through multiple development stages in the future to realize its final goal—autonomous driving. Based on the existing ICV researches, this paper believes that ICV can be used to improve the efficiency and safety of freeway. The current research of ICV has two main directions: one focuses on the traffic flow characteristics of vehicles with different attributes, the other is concerned with using ICV to reduce congestion. From the policies issued by countries around the world and the development plans promoted by major vehicle manufacturers, the future development trends and challenges of ICV are analyzed. ICV must overcome all the shortcomings to achieve its final goal, including insufficient hardware capabilities or excessive cost, and the degree of intelligence that needs to be improved.
Technical Paper

Challenges in the Regulatory Framework of Automated Driving

2019-01-09
2019-26-0097
Automated Driving (AD) is foreseen to be one of the major social and technological challenges in the coming years. Many manufacturers are developing new models with cutting-edge functionalities, which are not included in the scope of the current regulatory framework. Apart from demonstrating their know-how and expertise about AD, their willingness to sell their AD models in the European market is accelerating the rule-making system. However, which is the roadmap for the European regulatory framework? Policy makers and regulatory bodies are pushing their boundaries at all levels (national and international) in order to introduce modifications in existing regulations. These regulations will enable the introduction of these new functionalities into the market. Without decreasing the standards of safety and security, the implementation of a clear and harmonized regulatory framework and approval process is extremely needed.
Research Report

Unsettled Topics Concerning Sensors for Automated Road Vehicles

2018-10-18
EPR2018001
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the new generation of sensors designed for vehicles capable of automated driving. Four main issues are outlined that merit immediate interest: First, specifying a standardized terminology and taxonomy to be used for discussing the sensors required by automated vehicles. Second, generating standardized tests and procedures for verifying, simulating, and calibrating automated driving sensors. Third, creating a standardized set of tools and methods to ensure the security, robustness, and integrity of data collected by such sensors. The fourth issue, regarding the ownership and privacy of data collected by automated vehicle sensors, is considered only briefly here since its scope far exceeds the technical issues that are the primary focus of the present report. SAE EDGE™ Research Reports are preliminary investigations of new technologies.
Research Report

Unsettled Legal Issues Facing Automated Vehicles

2020-02-28
EPR2020005
This SAE EDGE Research Report explores the many legal issues raised by the advent of automated vehicles. While promised to bring major changes to our lives, there are significant legal challenges that have to be overcome before they can see widespread use. A century’s worth of law and regulation were written with only human drivers in mind, meaning they have to be amended before machines can take the wheel. Everything from key federal safety regulations down to local parking laws will have to shift in the face of AVs. This report undertakes an examination of the AV laws of Nevada, California, Michigan, and Arizona, along with two failed federal AV bills, to better understand how lawmakers have approached the technology. States have traditionally regulated a great deal of what happens on the road, but does that still make sense in a world with AVs? Would the nascent AV industry be able to survive in a world with fifty potential sets of rules?
Research Report

Unsettled Issues Facing Automated Vehicles and Insurance

2020-08-05
EPR2020015
This SAE EDGE™ Research Report explores how the deployment of automated vehicles (AVs) will affect the insurance industry and the principles of liability that underly the structure of insurance in the US. As we trade human drivers for suites of sensors and computers, who (or what) is responsible when there is a crash? The owner of the vehicle? The automaker that built it? The programmer that wrote the code? Insurers have over 100 years of experience and data covering human drivers, but with only a few years’ worth of information on AVs – how can they properly predict the true risks associated with their deployment? Without an understanding of the nature and risks of AVs, how can the government agencies that regulate the insurance industry provide proper oversight? Do the challenges AVs present require a total reworking of our insurance and liability systems, or can our current structures be adapted to fit them with minor modifications?
Technical Paper

Foreseeable Misuse in Automated Driving Vehicles - The Human Factor in Fatal Accidents of Complex Automation

2017-03-28
2017-01-0059
Today, highly automated driving is paving the road for full autonomy. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today. As we transfer more responsibility, functionality and control from human to machine, technologies become more complex, less transparent and making constant safe-guarding a challenge. With automation, potential misuse and insufficient system safety design are important factors that can cause fatal accidents, such as in TESLA autopilot incident.
Research Report

Unsettled Topics in Automated Vehicle Data Sharing for Verification and Validation Purposes

2020-06-03
EPR2020007
Unsettled Topics in Automated Vehicle Data Sharing for Verification and Validation Purposes discusses the unsettled issue of sharing the terabytes of driving data generated by Automated Vehicles (AVs) on a daily basis. Perception engineers use these large datasets to analyze and model the automated driving systems (ADS) that will eventually be integrated into future “self-driving” vehicles. However, the current industry practices of collecting data by driving on public roads to understand real-world scenarios is not practical and will be unlikely to lead to safe deployment of this technology anytime soon. Estimates show that it could take 400 years for a fleet of 100 AVs to drive enough miles to prove that they are as safe as human drivers.
Technical Paper

Hardware/Software Co-Design of an Automotive Embedded Firewall

2017-03-28
2017-01-1659
The automotive industry experiences a major change as vehicles are gradually becoming a part of the Internet. Security concepts based on the closed-world assumption cannot be deployed anymore due to a constantly changing adversary model. Automotive Ethernet as future in-vehicle network and a new E/E Architecture have different security requirements than Ethernet known from traditional IT and legacy systems. In order to achieve a high level of security, a new multi-layer approach in the vehicle which responds to special automotive requirements has to be introduced. One essential layer of this holistic security concept is to restrict non-authorized access by the deployment of embedded firewalls. This paper addresses the introduction of automotive firewalls into the next-generation domain architecture with a focus on partitioning of its features in hardware and software.
Technical Paper

A Blockchain-Backed Database for Qualified Parts

2019-03-19
2019-01-1343
Certain standard parts in the aerospace industry require qualification as a prerequisite to manufacturing, signifying that the manufacturer’s capacity to produce parts consistent with the performance specifications has been audited by a neutral third-party auditor, key customer, and/or group of customers. In at least some cases, a certifying authority provides manufacturers with certificates of qualification which they can then present to prospective customers, and/or lists qualified suppliers in a Qualified Parts List or Qualified Supplier List available from that qualification authority. If this list is in an infrequently updated and/or inconsistently styled format as might be found in a print or PDF document, potential customers wishing to integrate qualification information into their supplier tracking systems must use a potentially error-prone manual process that could lead to later reliance on out-of-date or even forged data.
Research Report

Unsettled Topics Concerning Automated Driving Systems and the Development Ecosystem

2020-03-17
EPR2020004
With over 100 years of operation, the current automobile industry has settled into an equilibrium with the development of methodologies, regulations, and processes for improving safety. In addition, a nearly $2-trillion market operates in the automotive ecosystem with connections into fields ranging from insurance to advertising. Enabling this ecosystem is a well-honed, tiered supply chain and an established development environment. Autonomous vehicle (AV) technology is a leap forward for the existing automotive industry; now the automobile is expected to manage perception and decision-making tasks. The safety technologies associated with these tasks were presented in an earlier SAE EDGE™ Research Report, “Unsettled Technology Areas in Autonomous Vehicle Test and Validation.”
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
X