Refine Your Search

Topic

Search Results

Event

AeroTech®

2024-04-18
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Digital Summit

2024-04-18
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

Attend - AeroTech®

2024-04-18
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Volunteer Resources

2024-04-18
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Journal Article

Using Delphi and System Dynamics for IoT Cybersecurity: Preliminary Airport Implications

2021-03-02
2021-01-0019
Day by day, airports adopt more IoT devices. However, airports are not exempt from possible failures due to malware’s proliferation that can abuse vulnerabilities. Computer criminals can access, corrupt, and extract information from individuals or companies. This paper explains the development of a propagation model, which started with a Delphi process. We discuss the preliminary implications for airports of the simulation model built from the Delphi recommendations.
Event

2024-04-18
Journal Article

Design Approach for Secure Networks to Introduce Data Analytics within the Aircraft Cabin

2019-09-16
2019-01-1853
In the past, aircraft network design did not demand for information security considerations. The aircraft systems were simple, obscure, proprietary and, most importantly for security, the systems have been either physically isolated or they have been connected by directed communication links. The union of the aircraft systems thus formed a federated network. These properties are in sharp contrast with today’s system designs, which rest upon platform-based solutions with shared resources being interconnected by a massively meshed and shared communication network. The resulting connectivity and the high number of interfaces require an in-depth security analysis as the systems also provide functions that are required for the safe operation of the aircraft. This network design evolution, however, resulted in an iterative and continuous adaption of existing network solutions as these have not been developed from scratch.
Standard

Deliverable Aerospace Software Supplement for AS9100A Quality Management Systems - Aerospace - Requirements for Software (based on AS9100A)

2003-03-12
HISTORICAL
AS9006
The basic requirements of AS9100A apply with the following clarifications. This document supplements the requirements of AS9100A for deliverable software. This supplement contains Quality System requirements for suppliers of products that contain deliverable embedded or loadable airborne, spaceborne or ground support software components that are part of an aircraft Type Design, weapon system, missile or spacecraft operational software and/or support software that is used in the development and maintenance of deliverable software. This includes the host operating system software including assemblers, compilers, linkers, loaders, editors, code generators, analyzers, ground simulators and trainers, flight test data reduction, etc., that directly support creation, test and maintenance of the deliverable software.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM (NADCAP) REQUIREMENTS FOR ACCREDITATION OF PASS THROUGH DISTRIBUTORS

1993-06-24
HISTORICAL
AS7103
This aerospace standard outlines the minimum requirements for the quality assurance program of a distributor of new aircraft or aerospace parts and material. It is designed to aid in the surveillance and accreditation of a distributor who procures new parts and materials and resells these products to customers or other distributors in the aviation or aerospace industry, i.e., a PASS THROUGH distributor. This standard may be used to determine the adequacy and implementation of the distributor’s quality assurance program.
Standard

Processes for Application-Specific Qualification of Electrical, Electronic, and Electromechanical Parts and Sub-Assemblies for Use in Aerospace, Defense, and High Performance Systems

2022-05-19
WIP
ARP6379A
This document describes a process for use by ADHP integrators of EEE parts and sub-assemblies (items) that have been targeted for other applications. This document does not describe specific tests to be conducted, sample sizes to be used, nor results to be obtained; instead, it describes a process to define and accomplish application-specific qualification; that provides confidence to both the ADHP integrators, and the integrators’ customers, that the item will performs its function(s) reliably in the ADHP application.
Standard

Standard Best Practices for System Safety Program Development and Execution

2018-11-19
WIP
GEIASTD0010B
This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision.
Article

Nvidia partners with AdaCore to secure self-driving firmware

2019-02-14
As mobility software becomes increasingly complex and connected, so does the risk of human error and system safety. To combat this, New York-based software company AdaCore will work with Nvidia Corporation of Santa Clara, California to apply open-source Ada and SPARK programming languages for select software security firmware elements in highly-complex, safety-critical systems like Nvidia’s DRIVE AGX automated and autonomous vehicle solutions.
Article

Connected aircraft technologies benefit airframe and original equipment manufacturers, operators, and travelers

2018-07-06
Connected aircraft means more than just in-flight movies, free texting, and Facebook posting with friends while in flight. In fact, the connected aircraft revolutionizes airline operations, dramatically improving fleet management, flight safety, passenger experience, maintenance, flight operations, aircraft turnaround time, and costs. For aircraft operators, connectivity presents a new set of operational benefits that were previously unavailable.
Article

Abaco’s new avionics platforms transfer data up to 40Gbps with Thunderbolt 3 connectivity

2019-04-02
Abaco Systems Inc. is launching a new family of avionics devices for test and simulation, development, and dataloading that feature Thunderbolt 3 interfaces. The new portable, high-speed, low-latency avionics devices – RCEI-830A-TB and QPM-1553-TB – are designed for a broad range of avionics applications and include Thunderbolt 3-to-PMC/XMC interfacing with ARINC 429 and MIL-STD-1553 protocols.
X