Refine Your Search

Topic

Search Results

Event

AeroTech® Digital Summit

2024-04-24
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech®

2024-04-24
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Volunteer Resources

2024-04-24
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

Attend - AeroTech®

2024-04-24
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Journal Article

The Missing Link: Aircraft Cybersecurity at the Operational Level

2020-07-25
Abstract Aircraft cybersecurity efforts have tended to focus at the strategic or tactical levels without a clear connection between the two. ...CSSEP’s process model postulates that security is best achieved by a balance of cybersecurity, cyber resiliency, defensibility, and recoverability and that control is best established by developing security constraints versus attempting to find every vulnerability. ...CSSEP identifies the major functions needed to do effective aircraft cybersecurity and provides a flexible framework as the “missing link” to connect the strategic and tactical levels of aircraft cybersecurity.
Training / Education

DO-326A and ED-202A An Introduction to the New and Mandatory Aviation Cyber-Security Essentials

2024-07-29
This course will introduce participants to industry best practices for real-world aviation cyber-security risk-assessment, development & assurance. Participants will learn the information necessary to help minimize DO-326/ED-202-set compliance risks and costs, while also optimizing cyber-security levels for the development, deployment and in-service phases Topics such as aircraft security aspects of safety, systems-approach to security, security planning, the airworthiness security process, and security effectiveness assurance will be covered.
Journal Article

Using Delphi and System Dynamics for IoT Cybersecurity: Preliminary Airport Implications

2021-03-02
2021-01-0019
Day by day, airports adopt more IoT devices. However, airports are not exempt from possible failures due to malware’s proliferation that can abuse vulnerabilities. Computer criminals can access, corrupt, and extract information from individuals or companies. This paper explains the development of a propagation model, which started with a Delphi process. We discuss the preliminary implications for airports of the simulation model built from the Delphi recommendations.
Magazine

Aerospace & Defense Technology: October 2015

2015-10-01
Countering cybersecurity threats against unmanned vehicle systems Cranfield University researchers have developed a monitoring system whose purpose is to monitor mission profile implementation at both high level mission execution and at lower level software code operation to tackle specific threats of malicious code and possible spurious commands received over a vehicle's data links.
Technical Paper

Lessons Learned in Inter-Organization Virtual Integration

2018-10-30
2018-01-1944
The SAE AS2C Standard AS5506C Architecture Analysis and Description Language (AADL) is a modeling language for predictive analysis of real-time software reliant, safety and cybersecurity critical systems that provides both the precision of formal modeling and the tool-agnostic freedom of a text-based representation. ...AADL supports multiple domains of architectural analysis such as timing, latency, resources, safety, scheduling, and cybersecurity. Adventium Labs conducted an exercise to determine the applicability of software engineering practices (e.g., continuous integration (CI), application programming interface (API) sharing, test driven development (TDD)) to the AADL-based Architecture Centric Virtual Integration Process (ACVIP).
Event

2024-04-24

SAE EDGE™ Research Reports - Publications

2024-04-24
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Video

Advancing Aircraft Cyber Security - Potential New Architectures and Technologies

2012-03-16
Cyber security in the aviation industry, especially in relation to onboard aircraft systems, presents unique challenges in its implementation and management. The cyber threat model is constantly evolving and will continually present new and different challenges to the aircraft operator in responding to new cyber threats without either invoking a lengthy software update and re-certification process or limiting aircraft-to-ground communications to the threatened system or systems. This presentation discusses a number of system architectural options and developing technologies that could be considered to enhance the aircraft cyber protection and defensive capabilities of onboard systems as well as to minimize the effort associated with certification/re-certification. Some of these limit the aircraft?s vulnerabilities or in cyber terms, its ?threat surface?.
Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Technical Paper

UAS Behaviour and Consistency Monitoring System for Countering Cyber Security Threats

2014-09-16
2014-01-2131
Upon their arrival, Unmanned Autonomous Systems (UAS) brought with them many benefits for those involved in a military campaign. They can use such systems to reconnoiter dangerous areas, provide 24-hr aerial security surveillance for force protection purposes or even attack enemy targets all the while avoiding friendly human losses in the process. Unfortunately, these platforms also carry the inherent risk of being built on innately vulnerable cybernetic systems. From software which can be tampered with to either steal data, damage or even outright steal the aircraft, to the data networks used for communications which can be jammed or even eavesdropped on to gain access to sensible information. All this has the potential to turn the benefits of UAS into liabilities and although the last decade has seen great advances in the development of protection and countermeasures against the described threats and beyond the risk still endures.
X