Refine Your Search

Topic

Search Results

Standard

Cybersecurity for Propulsion Systems

2023-09-05
CURRENT
AIR7368
The purpose of this SAE Aerospace Information Report (AIR) is to provide guidance for aircraft engine and propeller systems (hereafter referred to as propulsion systems) certification for cybersecurity. Compliance for cybersecurity requires that the engine control, propeller control, monitoring system, and all auxiliary equipment systems and networks associated with the propulsion system (such as nacelle systems, overspeed governors, and thrust reversers) be protected from intentional unauthorized electronic interactions (IUEI) that may result in an adverse effect on the safety of the propulsion system or the airplane.
Article

SAE course delivers an introduction to the latest aviation cybersecurity essentials

2019-06-11
SAE International’s two-day course, DO-326A and ED-202A: An Introduction to the New and Mandatory Aviation Cyber-Security Essentials, introduces attendees to industry best practices for real-world aviation cybersecurity risk assessment, development, assurance. ...SAE International’s two-day course, DO-326A and ED-202A: An Introduction to the New and Mandatory Aviation Cyber-Security Essentials, introduces attendees to industry best practices for real-world aviation cybersecurity risk assessment, development, assurance.
Technical Paper

Secure Deterministic L2/L3 Ethernet Networking for Integrated Architectures

2017-09-19
2017-01-2103
Cybersecurity attacks exploit vulnerabilities related to the increased complexity and connectivity of critical infrastructure systems. ...Network security is a core component of the overall cyber-security and defense-in-depth capability for distributed architectures. Protection mechanism for information, interface and system integrity, communication availability, and data confidentiality are required for design of safe and secure integrated embedded infrastructure.
Event

Attend - Innovations in Mobility: Aerospace Digital Summit

2024-04-17
Innovations in Mobility: Aerospace Digital Summitaerospace mobility leaders convene leverage cutting-edge technology, design, develop safety measures, integrate current regulations, suggest future policies, expand markets, diversify revenue streams.
Technical Paper

Considerations for Requirements and Specifications of a Digital Thread in Aircraft Data Life Cycle Management

2024-03-05
2024-01-1946
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle.
Journal Article

Design Approach for Secure Networks to Introduce Data Analytics within the Aircraft Cabin

2019-09-16
2019-01-1853
In the past, aircraft network design did not demand for information security considerations. The aircraft systems were simple, obscure, proprietary and, most importantly for security, the systems have been either physically isolated or they have been connected by directed communication links. The union of the aircraft systems thus formed a federated network. These properties are in sharp contrast with today’s system designs, which rest upon platform-based solutions with shared resources being interconnected by a massively meshed and shared communication network. The resulting connectivity and the high number of interfaces require an in-depth security analysis as the systems also provide functions that are required for the safe operation of the aircraft. This network design evolution, however, resulted in an iterative and continuous adaption of existing network solutions as these have not been developed from scratch.
Standard

Unmanned Systems (UxS) Control Segment (UCS) Architecture: Architecture Technical Governance

2020-08-12
HISTORICAL
AS6522A
This Technical Governance is part of the SAE UCS Architecture Library and is primarily concerned with the UCS Architecture Model (AS6518) starting at Revision A and its user extensions. Users of the Model may extend it in accordance with AS6513 to meet the needs of their UCS Products. UCS Products include software components, software configurations and systems that provide or consume UCS services. For further information, refer to AS6513 Revision A or later. Technical Governance is part of the UCS Architecture Framework. This framework governs the UCS views expressed as Packages and Diagrams in the UCS Architecture Model.
Standard

Unmanned Systems (UxS) Control Segment (UCS) Architecture: Architecture Description

2020-07-14
HISTORICAL
AS6512A
This document is the Architecture Description (AD) for the SAE Unmanned Systems (UxS) Control Segment (UCS) Architecture Library Revision A or, simply, the UCS Architecture. The architecture is expressed by a library of SAE publications as referenced herein. The other publications in the UCS Architecture Library Revision A are: AS6513A, AS6518A, AS6522A, and AS6969A.
Standard

Implementation Guide for Data Management

2014-07-01
WIP
GEIAHB859A
The federal government and industry have moved to concurrent acquisition and development processes using integrated process teams (IPTs). These processes are supported by timely, accurate, cross functional access to data within an integrated data environment (IDE) enabled by advances in information technology (IT). Since the advent of acquisition reform in 1994, Data Management (DM) practices have evolved from being directed by a prescriptive set of standards and procedures to use of the guidance in a principles-based standard -- ANSI/EIA 859.

GEIA Handbook 859 provides implementation guidance for ANSI/EIA 859, with discussions of applications of the standard's principles, tools, examples, and case studies. Handbook 859 is organized according to the lifecycle of data management and covers activities from the pre-RFP stage through records disposition.

Standard

Processes for Application-Specific Qualification of Electrical, Electronic, and Electromechanical Parts and Sub-Assemblies for Use in Aerospace, Defense, and High Performance Systems

2022-05-19
WIP
ARP6379A
This document describes a process for use by ADHP integrators of EEE parts and sub-assemblies (items) that have been targeted for other applications. This document does not describe specific tests to be conducted, sample sizes to be used, nor results to be obtained; instead, it describes a process to define and accomplish application-specific qualification; that provides confidence to both the ADHP integrators, and the integrators’ customers, that the item will performs its function(s) reliably in the ADHP application.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Magazine

Aerospace & Defense Technology: October 2020

2020-10-01
The Role of Autonomous Unmanned Ground Vehicle Technologies in Defense Applications Information Warfare - Staying Protected at the Edge Designing Connectivity Solutions for an Electric Aircraft Future Redesigning the Systems Engineering Process to Speed Development of E-Propulsion Aircraft Four RF Technology Trends You Need to Know for Satellite Communication Device Design Manufacturer Reduces Risk and Improves Quality of Military Radar Receivers Instrumentation for Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems Precision data acquisition is required to generate a comprehensive set of measurements of the blade surface pressures, pitch link loads, hub loads, rotor wakes and performance of high-speed single-rotor and compound-rotor systems to support the development of next-generation rotorcraft.
Magazine

Tech Briefs: April 2018

2018-04-01
Laser Detecting Systems Enhancing Survivability and Lethality on the Battlefield Designing With Plastics for Military Equipment Engine Air-Brakes Paving the Way to Quieter Aircraft Nett Warrior Enhancing Battlefield Connectivity and Communications XPONENTIAL 2018 - An AUVSI Experience Communications in Space: A Deep Subject First Air-Worthy Metal-Printed RF Filter Ready for Takeoff Validation of Automated Prediction of Blood Product Needs Algorithm Processing Continuous Non-Invasive Vital Signs Streams (ONPOINT4) Using a combination of non-invasive sensors, advanced algorithms, and instruments built for combat medics could reduce hemorrhaging and improve survival rates. Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback Successful development of mobile weapon systems must incorporate operation on sloped terrain.
Article

Software needs security, and security needs software: a scientific overview

2019-04-22
Software needs security. That's a consequence of using software to control critical systems. It's difficult because software is inherently a complex artifact, even when the code just consists of a single sequential program in a single programming language, with well-defined inputs and outputs. Of course, actual software rarely if ever has such a simple structure. Security needs software. That's a consequence of the complexity just mentioned. No process can ensure security at scale unless it is automated by using software itself: programming languages, verification tools, software platforms.
Article

Nvidia partners with AdaCore to secure self-driving firmware

2019-02-14
As mobility software becomes increasingly complex and connected, so does the risk of human error and system safety. To combat this, New York-based software company AdaCore will work with Nvidia Corporation of Santa Clara, California to apply open-source Ada and SPARK programming languages for select software security firmware elements in highly-complex, safety-critical systems like Nvidia’s DRIVE AGX automated and autonomous vehicle solutions.
Article

Virtual factories accelerate collaboration, advance technologies

2019-08-26
The Commonwealth Center for Advanced Manufacturing (CCAM), a non-profit consortium based in Prince George County, Virginia, uses a 3D visualization lab to expand beyond the walls of its 62,000-square-foot brick and mortar facility and deliver a collaborative development for researchers in industry, academia, and government.
X