Refine Your Search


Search Results


Requirements for a COTS Assembly Management Plan

This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)

Airworthiness Assurance for Airborne Electronic Hardware (AEH) Containing Commercial-off-the-shelf (COTS) Electronic Components

This document addresses issues related to assurance that COTS electronic hardware components will perform their intended function in the AEH equipment or system in which they are installed. Those issues may impact system design, reliability assessment, quality, testing, production or support; but this document is not intended to be specific to any of those disciplines. This document is focused on the hardware issues raised in DOT/FAA/TC-16/57; it does not include issues related to software, firmware, etc. This document is intended to fit within the development process for civil aircraft and systems. This document can be used to support design and analysis activities in RTCA DO-254/EUROCAE ED-80 and RTCA DO-297/EUROCAE ED-124, as well as SAE ARP4754. This document addresses twelve (12) of the twenty-six (26) specific issues described in DOT/FAA/TC-16/57.

Glossary of System Safety Engineering and Management

This SAE Aerospace Information Report will be a compilation of system safety engineering and management terms and definitions covering concepts used across multiple products and disciplines

Standard for Preparing a DMSMS Management Plan

This document defines the requirements for developing a DMSMS Management Plan, hereinafter also called the Plan, to assure customers that the Plan owner is using a proactive DMSMS process for minimizing the cost and impact that part and material obsolescence will have on equipment delivered by the Plan owner. The technical requirements detailed in clause 5 ensure that the Plan owner can meet the requirement of having a process to address obsolescence as required by Industry Standards such as EIA-4899 "Standard for Preparing an Electronic Components Management Plan" and DoD Programs as required by MIL-STD-3018 "Parts Management". Owners of DMSMS Management Plans include System Integrators, Original Equipment Manufacturers (OEM), and logistics support providers.

Implementation Guide for Data Management

The federal government and industry have moved to concurrent acquisition and development processes using integrated process teams (IPTs). These processes are supported by timely, accurate, cross functional access to data within an integrated data environment (IDE) enabled by advances in information technology (IT). Since the advent of acquisition reform in 1994, Data Management (DM) practices have evolved from being directed by a prescriptive set of standards and procedures to use of the guidance in a principles-based standard -- ANSI/EIA 859.

GEIA Handbook 859 provides implementation guidance for ANSI/EIA 859, with discussions of applications of the standard's principles, tools, examples, and case studies. Handbook 859 is organized according to the lifecycle of data management and covers activities from the pre-RFP stage through records disposition.

Research Report

Unsettled Technology Opportunities for Vehicle Health Management and the Role for Health-Ready Components

Game-changing opportunities abound for the application of vehicle health management (VHM) across multiple transportation-related sectors, but key unresolved issues continue to impede progress. VHM technology is based upon the broader field of advanced analytics. Much of traditional analytics efforts to date have been largely descriptive in nature and offer somewhat limited value for large-scale enterprises. Analytics technology becomes increasingly valuable when it offers predictive results or, even better, prescriptive results, which can be used to identify specific courses of action. It is this focus on action which takes analytics to a higher level of impact, and which imbues it with the potential to materially impact the success of the enterprise. Artificial intelligence (AI), specifically machine learning technology, shows future promise in the VHM space, but it is not currently adequate by itself for high-accuracy analytics.

Standard Best Practices for System Safety Program Development and Execution

This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision.


This document will address measures pertaining to and directly associated with the maintainability and reliability of FSTDs throughout their entire life cycle, from initial specification and design to de-commissioning. Although the primary emphasis of this document is on full flight simulators (with motion and visual systems), it should be applicable in part or total to all FSTDs.


Rockets re-engineered-a step further into the cosmos Powertrain design for reliability Ice breaker Mazda's Skyactiv-X beats the big companies to market with a promising new engine that marries Otto and Diesel attributes. Advances for off-highway engine design As manufacturers continue to drive out cost and meet a worldwide patchwork of regulatory frameworks, the tools for developing those engines are advancing. From showcase prototypes to advanced analytical techniques, suppliers are helping the cause. Aeroacoustic simulation delivers breakthroughs in aircraft noise reduction Autonomy testing: Simulation to the rescue Autonomous technology development injects new rigors on vehicle-development testing.

SAE International anti-counterfeit standards integral to obsolescence management

Counterfeit parts prevention is integral to an effective obsolescence management plan, and the focus of anti-counterfeit standards – including Counterfeit Avoidance Standard (AS5553) and Counterfeit Detection Standard (AS6081) – from SAE International in Warrendale, Pa. SAE International officials are bringing the anti-counterfeit discussion and sharing best practices, which include adherence to critical standards, to the Future of Obsolescence Management (FOM) event on October 10 and 11 in Washington.

GE Aviation chooses Microsoft Azure to help drive digital transformation in aviation

GE Aviation Digital Solutions is scaling its analytics and operations solutions Microsoft Azure cloud computing to help accelerate digital transformation in aviation and enhance data protection, regulatory compliance, and efficiency. Emirates Airlines is expanding its relationship with GE Aviation to include predictive maintenance and diagnostics.