Refine Your Search


Search Results

Viewing 1 to 6 of 6
Journal Article

Cybersecurity Considerations for Heavy Vehicle Event Data Recorders

Abstract Trust in the digital data from heavy vehicle event data recorders (HVEDRs) is paramount to using the data in legal contests. Ensuring the trust in the HVEDR data requires an examination of the ways the digital information can be attacked, both purposefully and inadvertently. The goal or objective of an attack on HVEDR data will be to have the data omitted in a case. To this end, we developed an attack tree and establish a model for violating the trust needed for HVEDR data. The attack tree provides context for mitigations and also for functional requirements. A trust model is introduced as well as a discussion on what constitutes forensically sound data. The main contribution of this article is an attack tree-based model of both malicious and accidental events contributing to compromised event data recorder (EDR) data. A comprehensive list of mitigations for HVEDR systems results from this analysis.

Requirements for a COTS Assembly Management Plan

This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Journal Article

Chip and Board Level Digital Forensics of Cummins Heavy Vehicle Event Data Recorders

Crashes involving Cummins powered heavy vehicles can damage the electronic control module (ECM) containing heavy vehicle event data recorder (HVEDR) records. When ECMs are broken and data cannot be extracted using vehicle diagnostics tools, more invasive and low-level techniques are needed to forensically preserve and decode HVEDR data. A technique for extracting non-volatile memory contents using non-destructive board level techniques through the available in-circuit debugging port is presented. Additional chip level data extraction techniques can also provide access to the HVEDR data. Once the data is obtained and preserved in a forensically sound manner, the binary record is decoded to reveal typical HVDER data like engine speed, vehicle speed, accelerator pedal position, and other status data. The memory contents from the ECM can be written to a surrogate and decoded with traditional maintenance and diagnostic software.

Data Acquisition from Light-Duty Vehicles Using OBD and CAN

Modern vehicles have multiple electronic control units (ECU) to control various subsystems such as the engine, brakes, steering, air conditioning, and infotainment. These ECUs are networked together to share information directly with each other. This in-vehicle network provides a data opportunity for improved maintenance, fleet management, warranty and legal issues, reliability, and accident reconstruction. Data Acquisition from Light-Duty Vehicles Using OBD and CAN is a guide for the reader on how to acquire and correctly interpret data from the in-vehicle network of light-duty (LD) vehicles. The reader will learn how to determine what data is available on the vehicle's network, acquire messages and convert them to scaled engineering parameters, apply more than 25 applicable standards, and understand 15 important test modes.

Connectivity and the Mobility Industry

Bound to play an ever increasing role in the driver-vehicle relationship, connectivity is becoming a basic consumer requirement when it comes to choosing a vehicle. Moving from the computer into the car, the ability to stay in touch, informed and entertained has reached yet a higher level of technology ubiquity. Featuring 20 SAE technical papers published in 2010 and 2011, Connectivity and the Mobility Industry addresses important aspects of one of the most cutting-edge topics in the industry today. Edited by Dr.