Refine Your Search

Topic

Search Results

Training / Education

Introduction to Car Hacking with CANbus

Therefore, engineers should ensure that systems are designed free of unreasonable risks to motor vehicle safety, including those that may result due to existence of potential cybersecurity vulnerabilities. The automotive industry is making vehicle cybersecurity an organizational priority.
Standard

Permanently or Semi-Permanently Installed Diagnostic Communication Devices, Security Guidelines

2020-03-04
CURRENT
J3005-2_202003
The scope of the document is to define the cyber-security best practices to reduce interference with normal vehicle operation, or to minimize risk as to unauthorized access of the vehicle's control, diagnostic, or data storage system; access by equipment (i.e., permanently or semi-permanently installed diagnostic communication device, also known as dongle, etc.) which is either permanently or semi-permanently connected to the vehicle's OBD diagnostic connector, either SAE J1939-13, SAE J1962, or other future protocol; or hardwired directly to the in-vehicle network.
Technical Paper

Integrated Safety and Security Development in the Automotive Domain

2017-03-28
2017-01-1661
The recently released SAE J3061 guidebook for cyber-physical vehicle systems provides high-level principles for automotive organizations for identifying and assessing cybersecurity threats and for designing cybersecurity aware systems in close relation to the ISO 26262 standard for the functional safety of road vehicles. ...., infotainment, car-2-car or car-2-infrastructure communication) as well as new advances toward advanced driver assistance systems (ADAS) or even autonomous driving functions make cybersecurity another key factor to be taken into account by vehicle suppliers and manufacturers. ...Although these can capitalize on experiences from many other domains, they still have to face several unique challenges when gearing up for specific cybersecurity challenges. A key challenge is related to the increasing interconnection of automotive systems with networks (such as Car2X).
Technical Paper

Secure Vehicular Communication Using Blockchain Technology

2020-04-14
2020-01-0722
Also, all the existing methods for vehicular communication rely on a centralized server which itself invite massive cyber-security threats. These threats and challenges can be addressed by using the Blockchain (BC) technology, where each transaction is logged in a decentralized immutable BC ledger.
Training / Education

Introduction to Highly Automated Vehicles

2020-12-07
Every year, the U.S. on average, experiences more than 34,000 traffic deaths and over 5 million vehicle crashes. While the trend in traffic deaths has been generally downward for the past decade, most of this reduction has been the result of optimizing passive occupant crash protection systems such as seatbelts and airbags. Highly automated vehicle's (HAV's) offer the potential to significantly reduce vehicle crashes by perceiving a dangerous situation before the crash has occurred and supporting the human driver with proactive warnings and in some cases active interventions to avoid or mitigate the crash.
Technical Paper

Safe and Secure Development: Challenges and Opportunities

2018-04-03
2018-01-0020
The ever-increasing complexity and connectivity of driver assist functions pose challenges for both Functional Safety and Cyber Security. Several of these challenges arise not only due to the new functionalities themselves but due to numerous interdependencies between safety and security. Safety and security goals can conflict, safety mechanisms might be intentionally triggered by attackers to impact functionality negatively, or mechanisms can compete for limited resources like processing power or memory to name just some conflict potentials. But there is also the potential for synergies, both in the implementation as well as during the development. For example, both disciplines require mechanisms to check data integrity, are concerned with freedom from interference and require architecture based analyses. So far there is no consensus in the industry on how to best deal with these interdependencies in automotive development projects.
Technical Paper

Research on CAN Network Security Aspects and Intrusion Detection Design

2017-09-23
2017-01-2007
With the rapid development of vehicle intelligent and networking technology, the IT security of automotive systems becomes an important area of research. In addition to the basic vehicle control, intelligent advanced driver assistance systems, infotainment systems will all exchange data with in-vehicle network. Unfortunately, current communication network protocols, including Controller Area Network (CAN), FlexRay, MOST, and LIN have no security services, such as authentication or encryption, etc. Therefore, the vehicle are unprotected against malicious attacks. Since CAN bus is actually the most widely used field bus for in-vehicle communications in current automobiles, the security aspects of CAN bus is focused on. Based on the analysis of the current research status of CAN bus network security, this paper summarizes the CAN bus potential security vulnerabilities and the attack means.
Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Journal Article

Using a Dual-Layer Specification to Offer Selective Interoperability for Uptane

2020-08-24
Abstract This work introduces the concept of a dual-layer specification structure for standards that separate interoperability functions, such as backward compatibility, localization, and deployment, from those essential to reliability, security, and functionality. The latter group of features, which constitute the actual standard, make up the baseline layer for instructions, while all the elements required for interoperability are specified in a second layer, known as a Protocols, Operations, Usage, and Formats (POUF) document. We applied this technique in the development of a standard for Uptane [1], a security framework for over-the-air (OTA) software updates used in many automobiles. This standard is a good candidate for a dual-layer specification because it requires communication between entities, but does not require a specific format for this communication.
Journal Article

Security Certificate Management System for V2V Communication in China

2020-08-18
Abstract Vehicle-to-Vehicle (V2V) communication is a vehicular communication technology to reduce traffic accidents and congestion. To protect V2V communication, multiple security standards have been developed. This article provides an overview of the China V2V security draft standard and compares it to the American IEEE1609.2 V2V standard and to the Security Credential Management System (SCMS). The article provides an overview of the Chinese cryptographic algorithms used in the China V2V standard, and points out differences in the certificate format, such as the lack of implicit certificates in the China V2V standard. The China V2V PKI architecture is similar to the American SCMS, however, the Chinese system utilizes a set of Root Certificate Authorities (CA) that are trusted via an out-of-band channel whereas the American SCMS supports elector-based addition and revocation of Root CAs.
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

2020-08-24
Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

2018-03-23
As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

Securing the Secret Key

2019-01-16
2019-01-0097
Recent advances in automotive technologies have paved way to a new era of connectivity. Advanced Driver Assistance Systems are getting deployed in automobiles; many companies are developing driverless cars; connected cars are no more a work of mere research. [1] Vehicle manufacturers are developing ways to interface mobile devices with vehicles. However, all these advances in technology has introduced security risks. Unlike traditional computing systems, the security risk of an automobile can be fatal and can result in loss of lives [2]. The in-vehicle network of an automobile was originally designed to operate in a closed environment and hence network security was not considered during its design [3]. Several studies have already shown that an in-vehicle network can be easily compromised and an intruder can take full control of the vehicle. Researchers are working on various ways to solve this problem. Securing the in-vehicle communication by encrypting the messages is one such way.
X