Refine Your Search


Search Results


Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. ...Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. ...This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems. This includes: Defining a complete lifecycle process framework that can be tailored and utilized within each organization’s development processes to incorporate Cybersecurity into cyber-physical vehicle systems from concept phase through production, operation, service, and decommissioning.
Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Training / Education

Keys to Creating a Cybersecurity Process from the J3061 Process Framework

This allows an organization to develop an internal cybersecurity process consistent with its other processes in order to build cybersecurity robustness into their cyber-physical systems. ...This web seminar will define key concepts in cybersecurity and discuss what a cybersecurity process consists of and why one is needed for the development of cyber-physical vehicle systems.
Technical Paper

Mitigating Unknown Cybersecurity Threats in Performance Constrained Electronic Control Units

Traditional Cybersecurity solutions fall short in meeting automotive ECU constraints such as zero false positives, intermittent connectivity, and low performance impact. ...We integrated Autonomous Security on a BeagleBone Black (BBB) system to evaluate the feasibility of mitigating Cybersecurity risks against potential threats. We identified key metrics that should be measured, such as level of security, ease of integration and system performance impact.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
Technical Paper

Information Security Risk Management of Vehicles

The results of this work is allowed to identify a number of cybersecurity threats of the automated security-critical automotive systems, which reduces the efficiency of operation, road safety and system safety. ...According to the evaluating criterion of board electronics, the presence of poorly-protected communication channels, the 75% of the researched modern vehicles do not meet the minimum requirements of cybersecurity due to the danger of external blocking of vital systems. The revealed vulnerabilities of the security-critical automotive systems lead to the necessity of developing methods for mechanical and electronic protection of the modern vehicle. ...The law of normal distribution of the mid-points of the expert evaluation of the cyber-security of a modern vehicle has been determined. Based on the system approach, ranking of the main cybersecurity treats is performed.
Technical Paper

Optimizing CAN Bus Security with In-Place Cryptography

In-vehicle networks used for inter-ECU communication, most commonly the CAN bus, were not designed with cybersecurity in mind, and as a result, communication by corrupt devices connected to the bus is not authenticated.
Technical Paper

Integrating STPA into ISO 26262 Process for Requirement Development

Developing requirements for automotive electric/electronic systems is challenging, as those systems become increasingly software-intensive. Designs must account for unintended interactions among software features, combined with unforeseen environmental factors. In addition, engineers have to iteratively make architectural tradeoffs and assign responsibilities to each component in the system to accommodate new safety requirements as they are revealed. ISO 26262 is an industry standard for the functional safety of automotive electric/electronic systems. It specifies various processes and procedures for ensuring functional safety, but does not limit the methods that can be used for hazard and safety analysis. System Theoretic Process Analysis (STPA) is a new technique for hazard analysis, in the sense that hazards are caused by unsafe interactions between components (including humans) as well as component failures and faults.
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
Technical Paper

A Blockchain-Backed Database for Qualified Parts

Certain standard parts in the aerospace industry require qualification as a prerequisite to manufacturing, signifying that the manufacturer’s capacity to produce parts consistent with the performance specifications has been audited by a neutral third-party auditor, key customer, and/or group of customers. In at least some cases, a certifying authority provides manufacturers with certificates of qualification which they can then present to prospective customers, and/or lists qualified suppliers in a Qualified Parts List or Qualified Supplier List available from that qualification authority. If this list is in an infrequently updated and/or inconsistently styled format as might be found in a print or PDF document, potential customers wishing to integrate qualification information into their supplier tracking systems must use a potentially error-prone manual process that could lead to later reliance on out-of-date or even forged data.

Automotive Engineering: May 2017

Innovations for lightweighting Tough fuel-economy bogies for 2021 and beyond are driving new approaches to materials use, as seen in these case studies. Axellent progress AAM's new Quantum drive-axle technology is a leap forward in lightweight, efficient driveline systems aimed at 2020 and beyond. Low-temperature combustion ready for prime time? At SAE's High-Efficiency IC Engines Symposium, Delphi said its new, third-generation GDCI is promising, but even LTC proponents admit that challenges remain. More automation for ECU testing The latest fault-insertion tests enable engineers to run more test cases in less time.
Technical Paper

CAN Crypto FPGA Chip to Secure Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms with A Symmetric Key

Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller area network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to be encrypted and secured. With this new feature of CAN FD, we propose a hardware design - CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. AES-128 algorithm will provide confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) will provide integrity and authentication of CAN message. The design has been modeled and verified by using Verilog HDL – a hardware description language, and implemented successfully into Xilinx FPGA chip by using simulation tool ISE (Xilinx).
Technical Paper

Application of Suspend Mode to Automotive ECUs

To achieve high robustness and quality, automotive ECUs must initialize from low-power states as quickly as possible. However, microprocessor and memory advances have failed to keep pace with software image size growth in complex ECUs such as in Infotainment and Telematics. Loading the boot image from non-volatile storage to RAM and initializing the software can take a very long time to show the first screen and result in sluggish performance for a significant time thereafter which both degrade customer perceived quality. Designers of mobile devices such as portable phones, laptops, and tablets address this problem using Suspend mode whereby the main processor and peripheral devices are powered down during periods of inactivity, but memory contents are preserved by a small “self-refresh” current. When the device is turned back “on”, fully initialized memory content allows the system to initialize nearly instantaneously.

The Safety of Controllers, Sensors, and Actuators: Book 5 - Automated Vehicle Safety

Safety has been ranked as the number one concern for the acceptance and adoption of automated vehicles since safety has driven some of the most complex requirements in the development of self-driving vehicles. Recent fatal accidents involving self-driving vehicles have uncovered issues in the way some automated vehicle companies approach the design, testing, verification, and validation of their products. Traditionally, automotive safety follows functional safety concepts as detailed in the standard ISO 26262. However, automated driving safety goes beyond this standard and includes other safety concepts such as safety of the intended functionality (SOTIF) and multi-agent safety. The Safety of Controllers, Sensors, and Actuators addresses the concept of safety for self-driving vehicles through the inclusion of 10 recent and highly relevent SAE technical papers.


Roadmap for future Indian passenger drone sector Internet of Vehicles: connected vehicles & data - driven solutions Development and verification of electronic braking system ECU software for commercial vehicle Engineering the Motivo Way Broad capabilities, unparalleled project diversity and an innovative culture have put this thriving California "idea factory" in high demand. Developing an alternative engine concept Ricardo's CryoPower engine leverages two unique combustion techniques for reduced emissions and fuel consumption-liquid nitrogen and split combustion. Long-haul trucking and stationary power generation will be the first beneficiaries of the technologies. Spark of genius Mazda's Skyactiv-X-the nexus of gasoline and diesel tech-remains on track for 2019 production. We test-drive recent prototypes to check development status. Plain bearings for aerospace applications

SAE Off-Highway Engineering: December 2, 2015

Improving heavy-duty engine component efficiencies Cylinder deactivation can improve fuel economy by using a reduced number of cylinders that operate at higher loads and thermal efficiency, while other cylinders are turned off, when the engine operates at partial load conditions. A switching roller finger follower is one of the technologies that help make it work. Pumping up hydraulic capabilities Electrohydraulic advances keep coming as distributed electronics flex their muscle. Tracking the trends in commercial vehicle communications Industry insiders at Molex offer what they think the future may hold for heavy-duty components in 24/7 communications systems. ADAS system validation It is crucial that different advanced driver assistance systems functionalities interact seamlessly with existing electronic control unit (ECU) networks.

Software needs security, and security needs software: a scientific overview

Software needs security. That's a consequence of using software to control critical systems. It's difficult because software is inherently a complex artifact, even when the code just consists of a single sequential program in a single programming language, with well-defined inputs and outputs. Of course, actual software rarely if ever has such a simple structure. Security needs software. That's a consequence of the complexity just mentioned. No process can ensure security at scale unless it is automated by using software itself: programming languages, verification tools, software platforms.