Refine Your Search


Search Results

Technical Paper

Challenges in Integrating Cybersecurity into Existing Development Processes

Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.

Challenges ahead: cybersecurity and the aerospace supply chain

Supply chains, now being targeted as a pathway to the vital core of organizations around the world, have become a vital part of the industry’s cybersecurity strategy, says Kirsten Koepsel, author of SAE International’s latest book, The Aerospace Supply Chain and Cyber Security – Challenges Ahead, now available.
Technical Paper

Integrated Safety and Security Development in the Automotive Domain

The recently released SAE J3061 guidebook for cyber-physical vehicle systems provides high-level principles for automotive organizations for identifying and assessing cybersecurity threats and for designing cybersecurity aware systems in close relation to the ISO 26262 standard for the functional safety of road vehicles. ...., infotainment, car-2-car or car-2-infrastructure communication) as well as new advances toward advanced driver assistance systems (ADAS) or even autonomous driving functions make cybersecurity another key factor to be taken into account by vehicle suppliers and manufacturers. ...Although these can capitalize on experiences from many other domains, they still have to face several unique challenges when gearing up for specific cybersecurity challenges. A key challenge is related to the increasing interconnection of automotive systems with networks (such as Car2X).
Technical Paper

Optimizing CAN Bus Security with In-Place Cryptography

In-vehicle networks used for inter-ECU communication, most commonly the CAN bus, were not designed with cybersecurity in mind, and as a result, communication by corrupt devices connected to the bus is not authenticated.
Technical Paper

Secure Vehicular Communication Using Blockchain Technology

Also, all the existing methods for vehicular communication rely on a centralized server which itself invite massive cyber-security threats. These threats and challenges can be addressed by using the Blockchain (BC) technology, where each transaction is logged in a decentralized immutable BC ledger.
Training / Education

Introduction to Highly Automated Vehicles

Every year, the U.S. on average, experiences more than 34,000 traffic deaths and over 5 million vehicle crashes. While the trend in traffic deaths has been generally downward for the past decade, most of this reduction has been the result of optimizing passive occupant crash protection systems such as seatbelts and airbags. Highly automated vehicle's (HAV's) offer the potential to significantly reduce vehicle crashes by perceiving a dangerous situation before the crash has occurred and supporting the human driver with proactive warnings and in some cases active interventions to avoid or mitigate the crash.


Newer generations of aircraft in production and use today are equipped with security applications that rely on digital certificates. It is expected that future aircraft will use certificates for increasing numbers of applications. The purpose of this document is to provide guidance for key life-cycle management, which refers to the phases through which digital certificates and associated cryptographic keys progress, from creation through usage to retirement. The guidance is based on open international standards that are adapted to the aviation environment, recognizing that a typical commercial airplane has a long lifespan, its operational environment is highly complex and regulated, and multiple stakeholders operate ground-based systems that communicate with airplanes. Using a standardized and consistent key management approach, as proposed in this document, helps to reduce cost of design, implementation, and operation even across a heterogeneous fleet.
Technical Paper

Safe and Secure Development: Challenges and Opportunities

The ever-increasing complexity and connectivity of driver assist functions pose challenges for both Functional Safety and Cyber Security. Several of these challenges arise not only due to the new functionalities themselves but due to numerous interdependencies between safety and security. Safety and security goals can conflict, safety mechanisms might be intentionally triggered by attackers to impact functionality negatively, or mechanisms can compete for limited resources like processing power or memory to name just some conflict potentials. But there is also the potential for synergies, both in the implementation as well as during the development. For example, both disciplines require mechanisms to check data integrity, are concerned with freedom from interference and require architecture based analyses. So far there is no consensus in the industry on how to best deal with these interdependencies in automotive development projects.

Hardware Protected Security for Ground Vehicles

Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
Technical Paper

Research on CAN Network Security Aspects and Intrusion Detection Design

With the rapid development of vehicle intelligent and networking technology, the IT security of automotive systems becomes an important area of research. In addition to the basic vehicle control, intelligent advanced driver assistance systems, infotainment systems will all exchange data with in-vehicle network. Unfortunately, current communication network protocols, including Controller Area Network (CAN), FlexRay, MOST, and LIN have no security services, such as authentication or encryption, etc. Therefore, the vehicle are unprotected against malicious attacks. Since CAN bus is actually the most widely used field bus for in-vehicle communications in current automobiles, the security aspects of CAN bus is focused on. Based on the analysis of the current research status of CAN bus network security, this paper summarizes the CAN bus potential security vulnerabilities and the attack means.
Technical Paper

Scalable Decentralized Solution for Secure Vehicle-to-Vehicle Communication

The automotive industry is set for a rapid transformation in the next few years in terms of communication. The kind of growth the automotive industry is poised for in fields of connected cars is both fascinating and alarming at the same time. The communication devices equipped to the cars and the data exchanges done between vehicles to vehicles are prone to a lot of cyber-related attacks. The signals that are sent using Vehicular Adhoc Network (VANET) between vehicles can be eavesdropped by the attackers and it may be used for various attacks such as the man in the middle attack, DOS attack, Sybil attack, etc. These attacks can be prevented using the Blockchain technology, where each transaction is logged in a decentralized immutable Blockchain ledger. This provides authenticity and integrity to the signals. But the use of Blockchain Platforms such as Ethereum has various drawbacks like scalability which makes it infeasible for connected car system.
Journal Article

Power Analysis and Fault Attacks against Secure CAN: How Safe Are Your Keys?

Abstract Designers of automotive systems find themselves pulled in an impossible number of directions. Systems must use the most advanced security features, but at the same time run on low-cost and resource-constrained hardware. Ultimately, an engineering trade-off will eventually be made regarding how encryption and key management is used on these systems, potentially leaving them vulnerable to attack. In this paper, we detail the applicability of side-channel power analysis and fault injection on automotive electronic systems, showing how these dangerous techniques can be used to break an otherwise secure system. We build a small example network using AES-CCM to implement an encrypted, authenticated CAN protocol. We demonstrate how open-source hardware and software can easily recover the encryption keys from some of these nodes with side-channel power analysis, and we recover a full firmware image from one device with a fault-injection attack using the same tools.
Journal Article

uACPC: Client-Initiated Privacy-Preserving Activation Codes for Pseudonym Certificates Model

Abstract With the adoption of Vehicle-to-everything (V2X) technology, security and privacy of vehicles are paramount. To avoid tracking while preserving vehicle/driver’s privacy, modern vehicular public key infrastructure provision vehicles with multiple short-term pseudonym certificates. However, provisioning a large number of pseudonym certificates can lead to an enormous growth of Certificate Revocation Lists (CRLs) during its revocation process. One possible approach to avoid such CRL growth is by relying on activation code (AC)-based solutions. In such solutions, the vehicles are provisioned with batches of encrypted certificates, which are decrypted periodically via the ACs (broadcasted by the back-end system). When the system detects a revoked vehicle, it simply does not broadcast the respective vehicle’s AC. As a result, revoked vehicles do not receive their respective AC and are prevented from decrypting their certificates.