Refine Your Search


Search Results

Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. ...Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles. ...As the domain geared up for the cybersecurity challenges, they leveraged experiences from many other domains, but must face several unique challenges.
Technical Paper

Mitigating Unknown Cybersecurity Threats in Performance Constrained Electronic Control Units

Traditional Cybersecurity solutions fall short in meeting automotive ECU constraints such as zero false positives, intermittent connectivity, and low performance impact. ...We integrated Autonomous Security on a BeagleBone Black (BBB) system to evaluate the feasibility of mitigating Cybersecurity risks against potential threats. We identified key metrics that should be measured, such as level of security, ease of integration and system performance impact.
Journal Article

(R)evolution of E/E Architectures

Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases.

Automotive Engineering: February 3, 2016

Baking in protection With vehicles joining the Internet of Things, connectivity is making cybersecurity a must-have obligation for automotive engineers, from initial designs through end-of-life.
Technical Paper

Secure Deterministic L2/L3 Ethernet Networking for Integrated Architectures

Cybersecurity attacks exploit vulnerabilities related to the increased complexity and connectivity of critical infrastructure systems. ...Network security is a core component of the overall cyber-security and defense-in-depth capability for distributed architectures. Protection mechanism for information, interface and system integrity, communication availability, and data confidentiality are required for design of safe and secure integrated embedded infrastructure.

SAE Truck & Off-Highway Engineering: October 2018

Quotes from COMVEC 2018 Industry leaders spoke extensively about all things autonomous-ADAS, big data, connectivity, cybersecurity, machine learning-at the annual SAE event. Here's some of what they had to say. Fuel-cell Class 8-take 2.0 With a longer-range and more-refined fuel cell-powered heavy-duty truck, Toyota aims to eventually eliminate emissions from trucks serving increasingly congested California ports. ...Editorial Bring innovation, disruption in-house Adding 3D printing to design, manufacturing processes Upstream devoted to truck cybersecurity threats Jacobs employs cylinder deactivation in HD engines to lower CO2, NOx Emissions reductions continue to disrupt CV industry Mercedes doubles down on electric vans and buses, considers fuel cells Off-road bus from Torsus transports to hard-to-reach places Q&A Perkins pursues plug-and-play connectivity

SAE Truck & Off-Highway Engineering: August 2017

Connected commercial vehicles bring cybersecurity to the fore Connectivity, automation and electrification will largely drive vehicle developments in the coming years, according to experts presenting at the revamped SAE COMVEC 17.
Technical Paper

Secure Vehicular Communication Using Blockchain Technology

Also, all the existing methods for vehicular communication rely on a centralized server which itself invite massive cyber-security threats. These threats and challenges can be addressed by using the Blockchain (BC) technology, where each transaction is logged in a decentralized immutable BC ledger.

Service Specific Permissions and Security Guidelines for Connected Vehicle Applications

SAE is developing a number of standards, including the SAE J2945/x and SAE J3161/x series, that specify a set of applications using message sets from the SAE J2735 data dictionary. (“Application” is used here to mean “a collection of activities including interactions between different entities in the service of a collection of related goals and associated with a given IEEE Provider Service Identifier (PSID)”). Authenticity and integrity of the communications for these applications are ensured using digital signatures and IEEE 1609.2 digital certificates, which also indicate the permissions of the senders using Provider Service Identifiers (PSIDs) and Service Specific Permissions (SSPs). The PSID is a globally unique identifier associated with an application specification that unambiguously describes how to build interoperable instances of that application.
Technical Paper

Event-Triggered Robust Control of an Integrated Motor-Gearbox Powertrain System for a Connected Vehicle under CAN and DOS-Induced Delays

This paper deals with an integrated motor-transmission (IMT) speed tracking control of the connected vehicle when there are controller area network (CAN)-induced delays and denial of service (DOS)-induced delays. A connected vehicle equipped with an IMT system may be attacked through the external network. Therefore, there are two delays on the CAN of the connected vehicle, which are CAN-induced and cyber-attack delays. A DOS attack generates huge delays in CAN and even makes the control system invalid. To address this problem, a robust dynamic output-feedback controller of the IMT speed tracking system considering event-triggered detectors resisting CAN-induced delays and DOS-induced delays is designed. The event-triggered detector is used to reduce the CAN-induced network congestion with appropriate event trigger conditions on the controller input and output channels. CAN-induced delays and DOS-induced delays are modeled by polytopic inclusions using the Taylor series expansion.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Safe and Secure Development: Challenges and Opportunities

The ever-increasing complexity and connectivity of driver assist functions pose challenges for both Functional Safety and Cyber Security. Several of these challenges arise not only due to the new functionalities themselves but due to numerous interdependencies between safety and security. Safety and security goals can conflict, safety mechanisms might be intentionally triggered by attackers to impact functionality negatively, or mechanisms can compete for limited resources like processing power or memory to name just some conflict potentials. But there is also the potential for synergies, both in the implementation as well as during the development. For example, both disciplines require mechanisms to check data integrity, are concerned with freedom from interference and require architecture based analyses. So far there is no consensus in the industry on how to best deal with these interdependencies in automotive development projects.
Training / Education

Intelligent Vehicles From Functional Framework to Vehicle Architecture

Considering the increasing demand for vehicle intelligence, more and more students, engineers and researchers are involved in this field. It can be challenging, however, to gain an understanding of the growing variety of intelligent vehicle technologies and how they must function together effectively as a system. This course provides an overview of state-of-the-art intelligent vehicles, presents a systematic framework for intelligent technologies and vehicle-level architecture, and introduces testing methodologies to evaluate individual and integrated intelligent functions.
Journal Article

Cyberattacks and Countermeasures for Intelligent and Connected Vehicles

Abstract ICVs are expected to make the transportation safer, cleaner, and more comfortable in the near future. However, the trend of connectivity has greatly increased the attack surfaces of vehicles, which makes in-vehicle networks more vulnerable to cyberattacks which then causes serious security and safety issues. In this article, we therefore systematically analyzed cyberattacks and corresponding countermeasures for in-vehicle networks of intelligent and connected vehicles (ICVs). Firstly, we analyzed the security risk of ICVs and proposed an in-vehicle network model from a hierarchical point of view. Then, we discussed possible cyberattacks at each layer of proposed network model.
Technical Paper

Scalable Decentralized Solution for Secure Vehicle-to-Vehicle Communication

The automotive industry is set for a rapid transformation in the next few years in terms of communication. The kind of growth the automotive industry is poised for in fields of connected cars is both fascinating and alarming at the same time. The communication devices equipped to the cars and the data exchanges done between vehicles to vehicles are prone to a lot of cyber-related attacks. The signals that are sent using Vehicular Adhoc Network (VANET) between vehicles can be eavesdropped by the attackers and it may be used for various attacks such as the man in the middle attack, DOS attack, Sybil attack, etc. These attacks can be prevented using the Blockchain technology, where each transaction is logged in a decentralized immutable Blockchain ledger. This provides authenticity and integrity to the signals. But the use of Blockchain Platforms such as Ethereum has various drawbacks like scalability which makes it infeasible for connected car system.
Journal Article

Enhancement of Automotive Penetration Testing with Threat Analyses Results

Abstract In this work, we present an approach to support penetration tests by combining safety and security analyses to enhance automotive security testing. Our approach includes a new way to combine safety and threat analyses to derive possible test cases. We reuse outcomes of a performed safety analysis as the input for a threat analysis. We show systematically how to derive test cases, and we present the applicability of our approach by deriving and performing test cases for a penetration test of an automotive electronic control unit (ECU). Therefore, we selected an airbag control unit due to its safety-critical functionality. During the penetration test, the selected control unit was installed on a test bench, and we were able to successfully exploit a discovered vulnerability, causing the detonation of airbags.
Journal Article

Design Approach for Secure Networks to Introduce Data Analytics within the Aircraft Cabin

In the past, aircraft network design did not demand for information security considerations. The aircraft systems were simple, obscure, proprietary and, most importantly for security, the systems have been either physically isolated or they have been connected by directed communication links. The union of the aircraft systems thus formed a federated network. These properties are in sharp contrast with today’s system designs, which rest upon platform-based solutions with shared resources being interconnected by a massively meshed and shared communication network. The resulting connectivity and the high number of interfaces require an in-depth security analysis as the systems also provide functions that are required for the safe operation of the aircraft. This network design evolution, however, resulted in an iterative and continuous adaption of existing network solutions as these have not been developed from scratch.
Journal Article

Vulnerability of FlexRay and Countermeasures

Abstract The importance of in-vehicle network security has increased with an increase in automated and connected vehicles. Hence, many attacks and countermeasures have been proposed to secure the controller area network (CAN), which is an existent in-vehicle network protocol. At the same time, new protocols-such as FlexRay and Ethernet-which are faster and more reliable than CAN have also been proposed. European OEMs have adopted FlexRay as a control network that can perform the fundamental functions of a vehicle. However, there are few studies regarding FlexRay security. In particular, studies on attacks against FlexRay are limited to theoretical studies or simulation-based experiments. Hence, the vulnerability of FlexRay is unclear. Understanding this vulnerability is necessary for the application of countermeasures and improving the security of future vehicles. In this article, we highlight the vulnerability of FlexRay found in the experiments conducted on a real FlexRay network.
Technical Paper

Selftrust - A Practical Approach for Trust Establishment

In recent years, with increase in external connectivity (V2X, telematics, mobile projection, BYOD) the automobile is becoming a target of cyberattacks and intrusions. Any such intrusion reduces customer trust in connected cars and negatively impacts brand image (like the recent Jeep Cherokee hack). To protect against intrusion, several mechanisms are available. These range from a simple secure CAN to a specialized symbiote defense software. A few systems (e.g. V2X) implement detection of an intrusion (defined as a misbehaving entity). However, most of the mechanisms require a system-wide change which adds to the cost and negatively impacts the performance. In this paper, we are proposing a practical and scalable approach to intrusion detection. Some benefits of our approach include use of existing security mechanisms such as TrustZone® and watermarking with little or no impact on cost and performance. In addition, our approach is scalable and does not require any system-wide changes.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.