Refine Your Search

Topic

Search Results

Standard

Road Vehicles - Cybersecurity Engineering

2020-02-12
HISTORICAL
ISO/SAE DIS 21434
A framework is defined that includes requirements for cybersecurity processes and a common language for communicating and managing cybersecurity risk. ...This document specifies requirements for cybersecurity risk management regarding engineering for concept, development, production, operation, maintenance, and decommissioning for road vehicle electrical and electronic (E/E) systems, including their components and interfaces. ...This document does not prescribe specific technology or solutions related to cybersecurity.

SAE EDGE™ Research Reports - Publications

2021-10-17
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Journal Article

Zero-Day Attack Defenses and Test Framework for Connected Mobility ECUs

2021-04-06
2021-01-0141
Recent developments in the commercialization of mobility services have brought unprecedented connectivity to the automotive sector. While the adoption of connected features provides significant benefits to vehicle owners, adversaries may leverage zero-day attacks to target the expanded attack surface and make unauthorized access to sensitive data. Protecting new generations of automotive controllers against malicious intrusions requires solutions that do not depend on conventional countermeasures, which often fall short when pitted against sophisticated exploitation attempts. In this paper, we describe some of the latent risks in current automotive systems along with a well-engineered multi-layer defense strategy. Further, we introduce a novel and comprehensive attack and performance test framework which considers state-of-the-art memory corruption attacks, countermeasures and evaluation methods.
Magazine

Autonomous Vehicle Engineering: July 2020

2020-07-02
Editorial High noon for high-level autonomy The Navigator A fork in the road for the AV business The Electric, Autonomous Revolution Lifts Off Engineering the new generation of electric and hybrid vertical-take-off-and-landing vehicles at Wisk and Elroy Air. New SAE Standard for Automated-Driving Developers Developed in less than a year, SAE's new J3216 standard will impact traffic management, operations and safety for automated mobility. Making Data Logging, Replay and Prototyping More Efficient High levels of continuity and compatibility are vital to avoid interruptions in the development process - and reduce cost. Radar Death Star ELunewave's 3D-printed spherical antenna makes for fast, 360-degree single-snapshot readings that are claimed to beat the slower sweeps of conventional radar. The Case for FOTA in AV Data Security Firmware over-the-air data transmission helps OEMs drive secure vehicle autonomy.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
Journal Article

Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures

2019-10-14
Abstract The rapid development of connected and automated vehicle technologies together with cloud-based mobility services is transforming the transportation industry. As a result, huge amounts of consumer data are being collected and utilized to provide personalized mobility services. Using big data poses serious challenges to data privacy. To that end, the risks of privacy leakage are amplified by data aggregations from multiple sources and exchanging data with third-party service providers, in face of the recent advances in data analytics. This article provides a review of the connected vehicle landscape from case studies, system characteristics, and dataflows. It also identifies potential challenges and countermeasures.
Standard

E/E Data Link Security

1991-09-16
HISTORICAL
J2186_199109
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Standard

Deliverable Aerospace Software Supplement for AS9100A Quality Management Systems - Aerospace - Requirements for Software (based on AS9100A)

2003-03-12
HISTORICAL
AS9006
The basic requirements of AS9100A apply with the following clarifications. This document supplements the requirements of AS9100A for deliverable software. This supplement contains Quality System requirements for suppliers of products that contain deliverable embedded or loadable airborne, spaceborne or ground support software components that are part of an aircraft Type Design, weapon system, missile or spacecraft operational software and/or support software that is used in the development and maintenance of deliverable software. This includes the host operating system software including assemblers, compilers, linkers, loaders, editors, code generators, analyzers, ground simulators and trainers, flight test data reduction, etc., that directly support creation, test and maintenance of the deliverable software.
Best Practice

Guidelines for Mobility Data Sharing Governance and Contracting

2020-04-08
CURRENT
MDC00001202004
Digitally enabled mobility vehicles and services, including dockless bikesharing and electric scooter sharing, are generating and collecting a growing amount of mobility data. Mobility data holds great potential to support transportation officials and their efforts to manage the public right-of-way, but the unlimited distribution of mobility data carries untested risks to privacy and public trust. The Mobility Data Collaborative™ has identified the need to improve and coordinate understanding among all parties around foundational policy and legal issues to support mobility data sharing, including privacy and contracting. The guidelines are geared towards supporting a scalable mobility data sharing framework that aligns the interests of the public and private sectors while addressing privacy, transparency, data ownership, and consumer trust.
Technical Paper

Connectivity in 2 Wheelers: Opportunities and Challenges

2019-11-21
2019-28-2437
Mobility is undergoing a “horses to cars”-sized shift that will reverberate across business and society for generations. Future of Mobility is mainly driven by 4 main pillars viz. Connected, Electrified, Automated and Shared Driving. With advancement in Communication Technology supplemented by huge customer base, Connectivity has proven to deliver better Services to the End-user. Connected Mobility is going to be the next Big Thing in the Mobility Arena. In this paper, we will try to qualitatively explore what Connected Mobility is all about and what it has to offer in terms of - Opportunities on one side as well as new challenges that were never witnessed in the realm of Mobility in the Past, with focus on the 2 wheeler segment. This paper focuses on Opportunities in terms of Location Based services, Vehicle Management, Data Analytics, Infotainment and possible Business scenarios and Models as well as challenges in Terms of Security and Data Ownership
Research Report

Unsettled Topics Concerning Sensors for Automated Road Vehicles

2018-10-18
EPR2018001
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the new generation of sensors designed for vehicles capable of automated driving. Four main issues are outlined that merit immediate interest: First, specifying a standardized terminology and taxonomy to be used for discussing the sensors required by automated vehicles. Second, generating standardized tests and procedures for verifying, simulating, and calibrating automated driving sensors. Third, creating a standardized set of tools and methods to ensure the security, robustness, and integrity of data collected by such sensors. The fourth issue, regarding the ownership and privacy of data collected by automated vehicle sensors, is considered only briefly here since its scope far exceeds the technical issues that are the primary focus of the present report. SAE EDGE™ Research Reports are preliminary investigations of new technologies.
Magazine

Autonomous Vehicle Engineering: August 2018

2018-08-02
Editorial V2Reality Blockchain Unchained! The weird world of cryptocurrency exists because of the intense mathematics of blockchain technology. The mobility sector is looking beyond Bitcoin to put blockchain to work in potentially game-changing ways. Are Blockchain and 'Smart Contracts' the Secure Future? Legal risk and reward of blockchain and smart contracts as a prescription for automotive applications Software Building Blocks for AV Systems Elektrobit's unique software framework is designed to smooth development of automated driving functions. Cyber Security Goes Upstream The first cloud-based solution for connected vehicles was born in Israel and is now pilot testing at global OEMs. Electronic Architectures Get Smart Upgradable, scalable and powerful new architectures will help enable data-hungry connected, autonomous vehicles. Aptiv's VP of Mobility Architecture explains.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
X