Refine Your Search

Topic

Search Results

Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

2017-09-23
2017-01-2005
Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
Technical Paper

Information Security Risk Management of Vehicles

2018-04-03
2018-01-0015
The results of this work is allowed to identify a number of cybersecurity threats of the automated security-critical automotive systems, which reduces the efficiency of operation, road safety and system safety. ...According to the evaluating criterion of board electronics, the presence of poorly-protected communication channels, the 75% of the researched modern vehicles do not meet the minimum requirements of cybersecurity due to the danger of external blocking of vital systems. The revealed vulnerabilities of the security-critical automotive systems lead to the necessity of developing methods for mechanical and electronic protection of the modern vehicle. ...The law of normal distribution of the mid-points of the expert evaluation of the cyber-security of a modern vehicle has been determined. Based on the system approach, ranking of the main cybersecurity treats is performed.
Magazine

Automotive Engineering: February 3, 2016

2016-02-03
Baking in protection With vehicles joining the Internet of Things, connectivity is making cybersecurity a must-have obligation for automotive engineers, from initial designs through end-of-life.
Magazine

SAE Truck & Off-Highway Engineering: October 2018

2018-10-01
Quotes from COMVEC 2018 Industry leaders spoke extensively about all things autonomous-ADAS, big data, connectivity, cybersecurity, machine learning-at the annual SAE event. Here's some of what they had to say. Fuel-cell Class 8-take 2.0 With a longer-range and more-refined fuel cell-powered heavy-duty truck, Toyota aims to eventually eliminate emissions from trucks serving increasingly congested California ports. ...Editorial Bring innovation, disruption in-house Adding 3D printing to design, manufacturing processes Upstream devoted to truck cybersecurity threats Jacobs employs cylinder deactivation in HD engines to lower CO2, NOx Emissions reductions continue to disrupt CV industry Mercedes doubles down on electric vans and buses, considers fuel cells Off-road bus from Torsus transports to hard-to-reach places Q&A Perkins pursues plug-and-play connectivity
Magazine

Automotive Engineering: February 2017

2017-02-02
SAE Standards News VS committees fully engaged on cybersecurity. Honda's new 10-speed is a slick shifter SAE Level 3 'hand off' challenging AI researchers Lightweight door module aims to trim vehicle weight Exclusive first drive: Torotrak's V-Charge technology New 10-speed auto delights in 2017 Ford F-150 Power and more underscore 2018 Toyota Camry I.D.
Standard

Electron Beam Powder Bed Fusion Process

2020-07-01
CURRENT
AMS7007
This specification establishes process controls for the repeatable production of aerospace parts by Electron Beam Powder Bed Fusion (EB-PBF). It is intended to be used for aerospace parts manufactured using additive manufacturing (AM) metal alloys, but usage is not limited to such applications.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
Technical Paper

Android Defense in Depth Strategy in an Automobile Ecosystem

2020-04-14
2020-01-1365
Android is becoming an environment of choice in the automotive sector because of near production grade open source stack availability and large developer community. With growing interest from Automotive OEMs for Android IVI (In-Vehicle Infotainment) solutions, we predict a similar growth trend in an automobile like in Mobile space. At another end, the need for more interconnected devices within the Automobile ecosystem is increasing, which leads to an increased threat to security. In sophisticated device interconnections, identifying the gateways and implementing the right security strategy is key to improve overall system security & stability. While Android is maturing for automotive and with growing interest from automotive OEMs, we spent time in analyzing current Android defense-in-depth concepts with the automotive perspective.
Magazine

SAE Off-Highway Engineering: December 2, 2016

2016-12-02
Autonomous plows ahead Agriculture, construction, mining-even marine-are advancing autonomous technology to improve the productivity and safety of vehicles on the job. Expediting engine design Simulation tools drive development of the most complex, fuel- efficient and powerful engines ever seen in off-highway applications. Industry 4.0: The smart factory arrives The plants that produce vehicles and their high-tech systems are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. The future is not so far-off Enhanced Cat 3500 engine boosts power 20%, trims fuel usage by 10% Phase 2 GHG rules driver for advanced technology, alternative fuels Eaton demonstrates waste heat recovery, variable valve actuation for HD diesels Hyliion develops add-on hybrid system for semi-trailers that reduces fuel consumption by 30% Tech-heavy Iveco Z Truck concept spawns 29 patents EPA's Grundler talks Phase 2 regs
Magazine

Automotive Engineering: November 3, 2016

2016-11-03
SAE Convergence 2016 Talk of the healthy aspects of disruption mingles with SAE's renowned technical emphasis to foster the auto industry's continuing evolution toward electrification and autonomy. The Battery Man Speaks The speed of progress in automotive lithium batteries has impressed AABC's Dr. Menahem Anderman. So has silicon-graphite anode technology development from Tesla and Panasonic. Industry 4.0: The smart factory arrives The plants that produce automotive systems and vehicles are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. Editorial: Promise of 48 volts is no shock Nissan unveils variable-compression-ratio ICE for 2018 Infiniti production model Optimizing engine oil warm-up strategies for 'real-world' driving In search of higher-energy-content batteries Making Multiphysics fast and convenient I.D.
Book

Introduction to Advanced Manufacturing

2019-07-24
Introduction to Advanced Manufacturing was written by two experienced and passionate engineers whose mission is to make the subject of advanced manufacturing easy to understand and a practical solution to everyday problems. Harik, Ph.D. and Wuest, Ph.D., professors who have taught the subject for decades, combined their expertise to develop both an applied manual and a theoretical reference that addresses many different needs. Introduction to Advanced Manufacturing covers the following topics in detail: • Composites Manufacturing • Smart Manufacturing • Additive Manufacturing • Computer Aided Manufacturing • Polymers Manufacturing • Assembly Processes • Manufacturing Quality Control and Productivity • Subtractive Manufacturing • Deformative Manufacturing Introduction to Advanced Manufacturing offers a new, refreshing way of studying how things are made in the digital age.
Technical Paper

Case Study for Defining Security Goals and Requirements for Automotive Security Parts Using Threat Modeling

2018-04-03
2018-01-0014
Several external networks like telematics, and SOTA and many in-vehicle networks by gateways and domain controllers have been increasingly introduced. However, these trends may potentially make many critical data opened, attacked and modified by hackers. These days, vehicle security has been significantly required as these vehicle security threats are related to the human life like drivers and pedestrians. Threat modeling is process of secure software development lifecycle which is developed by Microsoft. It is a systematic approach for analyzing the potential threat in software and identifying the security risk associated with software. Through threat modeling, security risk is be mitigated and eliminated. In vehicle software System, one of vulnerability can affect critical problem about safety. An approach from experience and hacking cases is not enough for analyzing the potential threat and preparing new hacking attack.
Magazine

Automotive Engineering: April 7, 2015

2015-04-07
GM's CTO driving new paths to technology leadership 'We're making actual production commitments regarding our advanced-technology strategy, rather than just talking about it,' says GM's CTO Jon Lauckner. 'We're absolutely going to be among the leaders, if not the leader, in these areas.' Aluminum prepares for its next big leap Ford's F-Series blockbuster was just the beginning. New micromills now in pilot phase aim to bring vastly stronger and more formable light-alloy materials at higher capacity, says Alcoa's Mike Murphy. Slick solutions for friction reduction From new lubricants to 'smart' oil pumps and clever bearing technologies, engine designers are attacking every potential source of spin losses and internal friction in the quest for more mechanical work out of less fuel. Next-gen NSX: a twin-turbo, multi-material Ferrari-fighter The production NSX made its much-awaited global debut at NAIAS in January.
Magazine

Automotive Engineering: February 3, 2015

2015-02-03
Getting a grip on AWD efficiency The safety and performance benefits of all-wheel drive are undeniable, but so are the penalties of added weight, friction losses, and complexity. Clever axle disconnects and E-axles are driving future AWD developments. E pluribus unum Inputs from many sensors are being combined to give safety systems a true vision of vehicle surroundings, with the resulting sensor fusion becoming a mainstay of autonomous vehicle electronics. Lightweighting poses repair challenges Mass-produced aluminum bodies and mixed-material structures present challenges for assembly and repair, as automakers increasingly pursue these lightweight strategies. Setting the standard Meggitt CTO Emeritus begins term at helm of SAE International, seeks to encourage cross-sector relations, elevate image of SAE as aerospace industry leader.
Magazine

Automotive Engineering: July 7, 2016

2016-07-07
Technology report Quest for 'new-car smell' dictates interior-materials changes Doing it again-this time with 10 After a successful decade-long collaboration on 6-speed transaxles, Ford and GM partner again on an all-new 10-speed automatic. Here's a look inside the gearbox and the project. Large-scale additive manufacturing for rapid vehicle prototyping A case study from Oak Ridge National Laboratory bridges the 'powertrain-in-the-loop' development process with vehicle systems implementation using big area additive manufacturing (BAAM). Global Vehicles Steel-intensive Mazda CX-9 sheds mass, debuts novel turbo setup
Technical Paper

Application of Suspend Mode to Automotive ECUs

2018-04-03
2018-01-0021
To achieve high robustness and quality, automotive ECUs must initialize from low-power states as quickly as possible. However, microprocessor and memory advances have failed to keep pace with software image size growth in complex ECUs such as in Infotainment and Telematics. Loading the boot image from non-volatile storage to RAM and initializing the software can take a very long time to show the first screen and result in sluggish performance for a significant time thereafter which both degrade customer perceived quality. Designers of mobile devices such as portable phones, laptops, and tablets address this problem using Suspend mode whereby the main processor and peripheral devices are powered down during periods of inactivity, but memory contents are preserved by a small “self-refresh” current. When the device is turned back “on”, fully initialized memory content allows the system to initialize nearly instantaneously.
X