Refine Your Search

Topic

Search Results

Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Magazine

Automotive Engineering: February 2017

2017-02-02
SAE Standards News VS committees fully engaged on cybersecurity. Honda's new 10-speed is a slick shifter SAE Level 3 'hand off' challenging AI researchers Lightweight door module aims to trim vehicle weight Exclusive first drive: Torotrak's V-Charge technology New 10-speed auto delights in 2017 Ford F-150 Power and more underscore 2018 Toyota Camry I.D.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Journal Article

Improvement of the Resilience of a Cyber-Physical Remote Diagnostic Communication System against Cyber Attacks

2019-04-02
2019-01-0112
In the near future, vehicles will operate autonomously and communicate with their environment. This communication includes Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) communication, and comunication with cloud-based servers (V2C). To improve the resilience of remote diagnostic communication between a vehicle and external test equipment against cyberattacks, it is imperative to understand and analyze the functionality and vulnerability of each communication system component, including the wired and wireless communication channels. This paper serves as a continuation of the SAE Journal publication on measures to prevent unauthorized access to the in-vehicle E/E system [9], explains the components of a cyber-physical system (CPS) for remote diagnostic communication, analyzes their vulnerability against cyberattacks and explains measures to improve the resiliance.
Research Report

Unsettled Topics Concerning Adopting Blockchain Technology in Aerospace

2020-10-30
EPR2020021
In the aerospace industry, competition is high and the need to ensure safety and security while managing costs is paramount. Furthermore, stakeholders—who gain the most by working together—do not necessarily trust each other. Now, mix that with changing enterprise technologies, management of historical records, and customized legacy systems. This issue touches all aspects of the aerospace industry, from frequent flyer miles to aircraft maintenance and drives tremendous inefficiency and cost. Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the industry. This SAE EDGE™ Research Report by Rhonda D. Walthall examines how blockchain technology could impact the aerospace industry and addresses some of the unsettled concerns surrounding its implementation.
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
Journal Article

Chip and Board Level Digital Forensics of Cummins Heavy Vehicle Event Data Recorders

2020-04-14
2020-01-1326
Crashes involving Cummins powered heavy vehicles can damage the electronic control module (ECM) containing heavy vehicle event data recorder (HVEDR) records. When ECMs are broken and data cannot be extracted using vehicle diagnostics tools, more invasive and low-level techniques are needed to forensically preserve and decode HVEDR data. A technique for extracting non-volatile memory contents using non-destructive board level techniques through the available in-circuit debugging port is presented. Additional chip level data extraction techniques can also provide access to the HVEDR data. Once the data is obtained and preserved in a forensically sound manner, the binary record is decoded to reveal typical HVDER data like engine speed, vehicle speed, accelerator pedal position, and other status data. The memory contents from the ECM can be written to a surrogate and decoded with traditional maintenance and diagnostic software.
Magazine

Automotive Engineering: November 3, 2016

2016-11-03
SAE Convergence 2016 Talk of the healthy aspects of disruption mingles with SAE's renowned technical emphasis to foster the auto industry's continuing evolution toward electrification and autonomy. The Battery Man Speaks The speed of progress in automotive lithium batteries has impressed AABC's Dr. Menahem Anderman. So has silicon-graphite anode technology development from Tesla and Panasonic. Industry 4.0: The smart factory arrives The plants that produce automotive systems and vehicles are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. Editorial: Promise of 48 volts is no shock Nissan unveils variable-compression-ratio ICE for 2018 Infiniti production model Optimizing engine oil warm-up strategies for 'real-world' driving In search of higher-energy-content batteries Making Multiphysics fast and convenient I.D.
Technical Paper

Buckendale Lecture Series: Transformational Technologies Reshaping Transportation—A Government Perspective

2018-09-01
2018-01-2011
Transportation departments are under-going a dramatic transformation, shifting from organizations focused primarily on building roads to a focus on mobility for all users. The transformation is the result of rapidly advancing autonomous vehicle technology and personal telecommunication technology. These technologies provide the opportunity to dramatically improve safety, mobility, and economic opportunity for society and industry. Future generations of engineers and other transportation professionals have the opportunity to be part of that societal change. This paper will focus on the technologies state DOT’s and the private sector are researching, developing, and deploying to promote the future of mobility and improved efficiency for commercial trucking through advancements in truck platooning, self-driving long-haul trucking, and automated last mile distribution networks.
X