Refine Your Search

Topic

Search Results

Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
Journal Article

A Comprehensive Risk Management Approach to Information Security in Intelligent Transport Systems

2021-05-05
Abstract Connected vehicles and intelligent transportation systems are currently evolving into highly interconnected digital environments. Due to the interconnectivity of different systems and complex communication flows, a joint risk analysis for combining safety and security from a system perspective does not yet exist. We introduce a novel method for joint risk assessment in the automotive sector as a combination of the Diamond Model, Failure Mode and Effects Analysis (FMEA), and Factor Analysis of Information Risk (FAIR). These methods have been sequentially composed, which results in a comprehensive risk management approach to information security in an intelligent transport system (ITS). The Diamond Model serves to identify and structurally describe threats and scenarios, the widely accepted FMEA provides threat analysis by identifying possible error combinations, and FAIR provides a quantitative estimation of probabilities for the frequency and magnitude of risk events.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

A Distributed “Black Box” Audit Trail Design Specification for Connected and Automated Vehicle Data and Software Assurance

2020-10-14
Abstract Automotive software is increasingly complex and critical to safe vehicle operation, and related embedded systems must remain up to date to ensure long-term system performance. Update mechanisms and data modification tools introduce opportunities for malicious actors to compromise these cyber-physical systems, and for trusted actors to mistakenly install incompatible software versions. A distributed and stratified “black box” audit trail for automotive software and data provenance is proposed to assure users, service providers, and original equipment manufacturers (OEMs) of vehicular software integrity and reliability. The proposed black box architecture is both layered and diffuse, employing distributed hash tables (DHT), a parity system and a public blockchain to provide high resilience, assurance, scalability, and efficiency for automotive and other high-assurance systems.
Journal Article

A Global Survey of Standardization and Industry Practices of Automotive Cybersecurity Validation and Verification Testing Processes and Tools

2023-11-16
Abstract The United Nation Economic Commission for Europe (UNECE) Regulation 155—Cybersecurity and Cybersecurity Management System (UN R155) mandates the development of cybersecurity management systems (CSMS) as part of a vehicle’s lifecycle. ...Due to the focus of R155 and its suggested implementation guideline, ISO/SAE 21434:2021—Road Vehicle Cybersecurity Engineering, mainly centering on the alignment of cybersecurity risk management to the vehicle development lifecycle, there is a gap in knowledge of proscribed activities for validation and verification testing. ...An inherent component of the CSMS is cybersecurity risk management and assessment. Validation and verification testing is a key activity for measuring the effectiveness of risk management, and it is mandated by UN R155 for type approval.
Journal Article

A Quantitative Analysis of Autonomous Vehicle Cybersecurity as a Component of Trust

2023-08-10
Abstract Connected autonomous vehicles that employ internet connectivity are technologically complex, which makes them vulnerable to cyberattacks. Many cybersecurity researchers, white hat hackers, and black hat hackers have discovered numerous exploitable vulnerabilities in connected vehicles. ...This study expanded the technology acceptance model (TAM) to include cybersecurity and level of trust as determinants of technology acceptance. This study surveyed a diverse sample of 209 licensed US drivers over 18 years old.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

Accelerated Secure Boot for Real-Time Embedded Safety Systems

2019-07-08
Abstract Secure boot is a fundamental security primitive for establishing trust in computer systems. For real-time safety applications, the time taken to perform the boot measurement conflicts with the need for near instant availability. To speed up the boot measurement while establishing an acceptable degree of trust, we propose a dual-phase secure boot algorithm that balances the strong requirement for data tamper detection with the strong requirement for real-time availability. A probabilistic boot measurement is executed in the first phase to allow the system to be quickly booted. This is followed by a full boot measurement to verify the first-phase results and generate the new sampled space for the next boot cycle. The dual-phase approach allows the system to be operational within a fraction of the time needed for a full boot measurement while producing a high detection probability of data tampering.
Journal Article

Anomaly-Based Intrusion Detection Using the Density Estimation of Reception Cycle Periods for In-Vehicle Networks

2018-05-16
Abstract The automotive industry intends to create new services that involve sharing vehicle control information via a wide area network. In modern vehicles, an in-vehicle network shares information between more than 70 electronic control units (ECUs) inside a vehicle while it is driven. However, such a complicated system configuration can result in security vulnerabilities. The possibility of cyber-attacks on vehicles via external services has been demonstrated in many research projects. As advances in vehicle systems (e.g., autonomous drive) progress, the number of vulnerabilities to be exploited by cyber-attacks will also increase. Therefore, future vehicles need security measures to detect unknown cyber-attacks. We propose anomaly-based intrusion detection to detect unknown cyber-attacks for the Control Area Network (CAN) protocol, which is popular as a communication protocol for in-vehicle networks.
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

2020-08-24
Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
Journal Article

Cyberattacks and Countermeasures for Intelligent and Connected Vehicles

2019-10-14
Abstract ICVs are expected to make the transportation safer, cleaner, and more comfortable in the near future. However, the trend of connectivity has greatly increased the attack surfaces of vehicles, which makes in-vehicle networks more vulnerable to cyberattacks which then causes serious security and safety issues. In this article, we therefore systematically analyzed cyberattacks and corresponding countermeasures for in-vehicle networks of intelligent and connected vehicles (ICVs). Firstly, we analyzed the security risk of ICVs and proposed an in-vehicle network model from a hierarchical point of view. Then, we discussed possible cyberattacks at each layer of proposed network model.
Journal Article

Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures

2019-10-14
Abstract The rapid development of connected and automated vehicle technologies together with cloud-based mobility services is transforming the transportation industry. As a result, huge amounts of consumer data are being collected and utilized to provide personalized mobility services. Using big data poses serious challenges to data privacy. To that end, the risks of privacy leakage are amplified by data aggregations from multiple sources and exchanging data with third-party service providers, in face of the recent advances in data analytics. This article provides a review of the connected vehicle landscape from case studies, system characteristics, and dataflows. It also identifies potential challenges and countermeasures.
Journal Article

Delivering Threat Analysis and Risk Assessment Based on ISO 21434: Practical and Tooling Considerations

2020-12-31
Abstract Automotive cybersecurity engineers now have the challenge of delivering Risk Assessments of their products using a method that is described in the new standard for automotive cybersecurity: International Organization for Standardization/Society of Automotive Engineers (ISO/SAE) 21434. ...Abstract Automotive cybersecurity engineers now have the challenge of delivering Risk Assessments of their products using a method that is described in the new standard for automotive cybersecurity: International Organization for Standardization/Society of Automotive Engineers (ISO/SAE) 21434.
Journal Article

Employing a Model of Computation for Testing and Verifying the Security of Connected and Autonomous Vehicles

2024-03-05
Abstract Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a novel testing framework based on a model of computation that generates scenarios and attacks in a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verification vector. The framework was applied for testing the performance of two cooperative adaptive cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline controller is one of a traditional design, while the proposed controller uses a resilient design that combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time.
Journal Article

Enhancement of Automotive Penetration Testing with Threat Analyses Results

2018-11-02
Abstract In this work, we present an approach to support penetration tests by combining safety and security analyses to enhance automotive security testing. Our approach includes a new way to combine safety and threat analyses to derive possible test cases. We reuse outcomes of a performed safety analysis as the input for a threat analysis. We show systematically how to derive test cases, and we present the applicability of our approach by deriving and performing test cases for a penetration test of an automotive electronic control unit (ECU). Therefore, we selected an airbag control unit due to its safety-critical functionality. During the penetration test, the selected control unit was installed on a test bench, and we were able to successfully exploit a discovered vulnerability, causing the detonation of airbags.
Journal Article

Exploiting Channel Distortion for Transmitter Identification for In-Vehicle Network Security

2020-08-18
Abstract Cyberattacks on financial and government institutions, critical infrastructure, voting systems, businesses, modern vehicles, and so on are on the rise. Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. This is due to the fact that the industry still relies on controller area network (CAN) protocol for in-vehicle control networks. The CAN protocol lacks basic security features such as message authentication, which makes it vulnerable to a wide range of attacks including spoofing attacks. This article presents a novel method to protect CAN protocol against packet spoofing, replay, and denial of service (DoS) attacks. The proposed method exploits physical uncolonable attributes in the physical channel between transmitting and destination nodes and uses them for linking the received packet to the source.
X