Refine Your Search

Topic

Author

Search Results

Technical Paper

A Blockchain-Backed Database for Qualified Parts

2019-03-19
2019-01-1343
Certain standard parts in the aerospace industry require qualification as a prerequisite to manufacturing, signifying that the manufacturer’s capacity to produce parts consistent with the performance specifications has been audited by a neutral third-party auditor, key customer, and/or group of customers. In at least some cases, a certifying authority provides manufacturers with certificates of qualification which they can then present to prospective customers, and/or lists qualified suppliers in a Qualified Parts List or Qualified Supplier List available from that qualification authority. If this list is in an infrequently updated and/or inconsistently styled format as might be found in a print or PDF document, potential customers wishing to integrate qualification information into their supplier tracking systems must use a potentially error-prone manual process that could lead to later reliance on out-of-date or even forged data.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

CAN Crypto FPGA Chip to Secure Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms with A Symmetric Key

2017-03-28
2017-01-1612
Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller area network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to be encrypted and secured. With this new feature of CAN FD, we propose a hardware design - CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. AES-128 algorithm will provide confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) will provide integrity and authentication of CAN message. The design has been modeled and verified by using Verilog HDL – a hardware description language, and implemented successfully into Xilinx FPGA chip by using simulation tool ISE (Xilinx).
Technical Paper

Case Study for Defining Security Goals and Requirements for Automotive Security Parts Using Threat Modeling

2018-04-03
2018-01-0014
Several external networks like telematics, and SOTA and many in-vehicle networks by gateways and domain controllers have been increasingly introduced. However, these trends may potentially make many critical data opened, attacked and modified by hackers. These days, vehicle security has been significantly required as these vehicle security threats are related to the human life like drivers and pedestrians. Threat modeling is process of secure software development lifecycle which is developed by Microsoft. It is a systematic approach for analyzing the potential threat in software and identifying the security risk associated with software. Through threat modeling, security risk is be mitigated and eliminated. In vehicle software System, one of vulnerability can affect critical problem about safety. An approach from experience and hacking cases is not enough for analyzing the potential threat and preparing new hacking attack.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Dyno-in-the-Loop: An Innovative Hardware-in-the-Loop Development and Testing Platform for Emerging Mobility Technologies

2020-04-14
2020-01-1057
Today’s transportation is quickly transforming with the nascent advent of connectivity, automation, shared-mobility, and electrification. These technologies will not only affect our safety and mobility, but also our energy consumption, and environment. As a result, it is of unprecedented importance to understand the overall system impacts due to the introduction of these emerging technologies and concepts. Existing modeling tools are not able to effectively capture the implications of these technologies, not to mention accurately and reliably evaluating their effectiveness with a reasonable scope. To address these gaps, a dynamometer-in-the-loop (DiL) development and testing approach is proposed which integrates test vehicle(s), chassis dynamometer, and high fidelity traffic simulation tools, in order to achieve a balance between the model accuracy and scalability of environmental analysis for the next generation of transportation systems.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors

2022-03-29
2022-01-0122
In this paper, we look at the upcoming trends in EE architectures, and investigate the underlying cyber-security threats and corresponding security requirements that lead to potential requirements for an “Automotive Embedded Hardware Trust Anchors” (AEHTA).
Technical Paper

Hardware/Software Co-Design of an Automotive Embedded Firewall

2017-03-28
2017-01-1659
The automotive industry experiences a major change as vehicles are gradually becoming a part of the Internet. Security concepts based on the closed-world assumption cannot be deployed anymore due to a constantly changing adversary model. Automotive Ethernet as future in-vehicle network and a new E/E Architecture have different security requirements than Ethernet known from traditional IT and legacy systems. In order to achieve a high level of security, a new multi-layer approach in the vehicle which responds to special automotive requirements has to be introduced. One essential layer of this holistic security concept is to restrict non-authorized access by the deployment of embedded firewalls. This paper addresses the introduction of automotive firewalls into the next-generation domain architecture with a focus on partitioning of its features in hardware and software.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Journal Article

Implementation Methodologies for Simulation as a Service (SaaS) to Develop ADAS Applications

2021-04-06
2021-01-0116
Over the years, the complexity of autonomous vehicle development (and concurrently the verification and validation) has grown tremendously in terms of component-, subsystem- and system-level interactions between autonomy and the human users. Simulation-based testing holds significant promise in helping to identify both problematic interactions between component-, subsystem-, and system-levels as well as overcoming delays typically introduced by the default full-scale on-road testing. Software in Loop (SiL) simulation is utilized as an intermediate step towards software deployment for autonomous vehicles (AV) to make them reliable. SiL efforts can help reduce the resources required for successful deployment by helping to validate the software for millions of road miles. A key enabler for accelerating SiL processes is the ability to use Simulation as a Service (SaaS) rather than just isolated instances of software.
Technical Paper

Intelligent Vehicle Monitoring for Safety and Security

2019-04-02
2019-01-0129
The caveat to these additional capabilities is issues like cybersecurity, complexity, etc. This paper is an exploration into FuSa and CAVs and will present a systematic approach to understand challenges and propose potential framework, Intelligent Vehicle Monitoring for Safety and Security (IVMSS) to handle faults/malfunctions in CAVs, and specifically autonomous systems.
Technical Paper

Investigation of Vehicular Networks and its Main Security Issues

2014-04-01
2014-01-0336
Vehicular Network is an emerging and developing technology to improve traffic management and safety issues, and enable a wide range of value-added services such as collision warning/avoidance. Many applications have been designed to provide safety and comfort for passengers. This technology is a prolific area for attackers who will attempt to challenge the network with their malicious or rational attacks. In this paper we elaborate what a vehicular network is, different kinds of communication in this field, main mechanism and related parts and how vehicular networks work then we introduce some of its applications. After primary familiarity with this system we investigate to different type of attacker, more important security issues, How to secure vehicular networks (security requirements and some tools and methods to achieve secure vehicular networks), difficulties and providing viable security solutions, and at the end briefly explanation of related standards.
Technical Paper

Lessons Learned in Inter-Organization Virtual Integration

2018-10-30
2018-01-1944
The SAE AS2C Standard AS5506C Architecture Analysis and Description Language (AADL) is a modeling language for predictive analysis of real-time software reliant, safety and cybersecurity critical systems that provides both the precision of formal modeling and the tool-agnostic freedom of a text-based representation. ...AADL supports multiple domains of architectural analysis such as timing, latency, resources, safety, scheduling, and cybersecurity. Adventium Labs conducted an exercise to determine the applicability of software engineering practices (e.g., continuous integration (CI), application programming interface (API) sharing, test driven development (TDD)) to the AADL-based Architecture Centric Virtual Integration Process (ACVIP).
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Technical Paper

Proposal of HILS-Based In-Vehicle Network Security Verification Environment

2018-04-03
2018-01-0013
We propose a security-testing framework to analyze attack feasibilities for automotive control software by integrating model-based development with model checking techniques. Many studies have pointed out the vulnerabilities in the Controller Area Network (CAN) protocol, which is widely used in in-vehicle network systems. However, many security attacks on automobiles did not explicitly consider the transmission timing of CAN packets to realize vulnerabilities. Additionally, in terms of security testing for automobiles, most existing studies have only focused on the generation of the testing packets to realize vulnerabilities, but they did not consider the timing of invoking a security testing. Therefore, we focus on the transmit timing of CAN packets to realize vulnerabilities. In our experiments, we have demonstrated the classification of feasible attacks at the early development phase by integrating the model checking techniques into a virtualized environment.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

2017-09-23
2017-01-2005
Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
Technical Paper

Securing Connected Vehicles End to End

2014-04-01
2014-01-0300
As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
X