Refine Your Search

Topic

Author

Search Results

Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Technical Paper

Applying Blockchain to Vehicle Cybersecurity: Nuance to the Standard Application

2022-03-29
2022-01-0368
In adjusting the data flow, this is an option to increase the cybersecurity for a complete system. This addition to the cybersecurity system provides a clear benefit. ...While this is the traditional application experienced, there are other applications relevant to cybersecurity. As part of the blockchain technology, the nodes are responsible for decision-making.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

Consequence-Driven Cybersecurity for High-Power Electric Vehicle Charging Infrastructure

2023-04-11
2023-01-0047
Cybersecurity of high-power charging infrastructure for electric vehicles (EVs) is critical to the safety, reliability, and consumer confidence in this publicly accessible technology. ...Cybersecurity of high-power charging infrastructure for electric vehicles (EVs) is critical to the safety, reliability, and consumer confidence in this publicly accessible technology. Cybersecurity vulnerabilities in high-power EV charging infrastructure may also present risks to broader transportation and energy-infrastructure systems. ...This paper details a methodology used to analyze and prioritize high-consequence events that could result from cybersecurity sabotage to high-power charging infrastructure. The highest prioritized events are evaluated under laboratory conditions for the severity of impact and the complexity of cybersecurity manipulation.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Cybersecurity Rating Framework and Its Application to J1939-91C Standard

2024-04-09
2024-01-2803
UNECE R155 explicitly references ISO/SAE 21434 and mandates a certified cybersecurity management system (CSMS) as a prerequisite for automotive manufacturers to achieve vehicle type approval and sell new vehicle types. ...However, the gap in the CSMS framework is a lack in a standardized system that provides guidance and common criteria for automakers to measure a vehicle’s level of compliance and compute a publicly accepted cybersecurity rating. To help establish increased consumer confidence, OEMs and smart mobility stakeholders could take additional proactive steps to ensure the safety and security of their products. ...This paper addresses the above requirement and discusses the cybersecurity rating framework (CSRF) that could establish a framework for rating vehicle cybersecurity by standardizing the measurement criteria, parameter vectors, process, and tools.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic.
Technical Paper

Cybersecurity in EV’s: Approach for Systematic Secured SW Development through ISO/SAE 21434 & ASPICE

2023-04-11
2023-01-0046
Cybersecurity (CS) is crucial and significantly important in every product that is connected to the network/internet. ...Hence making it very important to guarantee that every single connected device shall have cybersecurity measures implemented to ensure the safety of the entire system. Looking into the forecasted worldwide growth in the electric vehicles (EV’s) segment, CS researchers have recently identified several vulnerabilities that exist in EV’s, electric vehicle supply equipment (EVSE) devices, communications to EVs, and upstream services, such as EVSE vendor cloud services, third party systems, and grid operators. ...Additional processes have been defined in the process reference and assessment model for the CS engineering in order to incorporate the cybersecurity related processes in the ASPICE scope. This paper aims at providing a model & brief overview to establish a correlation between the ASPICE, ISO/SAE 21434 and the ISO 26262 functional safety (FS) standards for development of a secured cybersecurity software with all the considerations that an organization can undertake.
Technical Paper

Evaluating Network Security Configuration (NSC) Practices in Vehicle-Related Android Applications

2024-04-09
2024-01-2881
Android applications have historically faced vulnerabilities to man-in-the-middle attacks due to insecure custom SSL/TLS certificate validation implementations. In response, Google introduced the Network Security Configuration (NSC) as a configuration-based solution to improve the security of certificate validation practices. NSC was initially developed to enhance the security of Android applications by providing developers with a framework to customize network security settings. However, recent studies have shown that it is often not being leveraged appropriately to enhance security. Motivated by the surge in vehicular connectivity and the corresponding impact on user security and data privacy, our research pivots to the domain of mobile applications for vehicles. As vehicles increasingly become repositories of personal data and integral nodes in the Internet of Things (IoT) ecosystem, ensuring their security moves beyond traditional issues to one of public safety and trust.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Technical Paper

Evaluation of Vehicle System Performance of an SAE J1939-91C Network Security Implementation

2023-04-11
2023-01-0041
CAN bus network proved to be efficient and dynamic for small compact cars as well as heavy-duty vehicles (HDV). However, HDVs are more susceptible to malicious attacks due to lack of security in their intra-vehicle communication protocols. SAE proposed a new standard named J1939-91C for CAN-FD networks which provides methods for establishing trust and securing mutual messages with optional encryption. J1939-91C ensures message authenticity, integrity, and confidentiality by implementing complex cryptographic operations including hash functions and random key generation. In this paper, the three main phases of J1939-91C, i.e., Network Formation, Rekeying, and Message Exchange, are simulated and tested on Electronic Control Units (ECUs) supporting CAN-FD network. Numerous test vectors were generated and validated to support SAE J1939-91C. The mentioned vectors were produced by simulating different encryption and hashing algorithms with variable message and key lengths.
Technical Paper

Functional Verification and Validation of Secure Controller Area Network (CAN) Communication

2022-03-29
2022-01-0110
In agriculture industry, increasing use of Vehicle Internet of Things (IoT), telematics and emerging technologies are resulting in smarter machines with connected solutions. Inter and Intra Communication with vehicle to vehicle and inside vehicle - Electronic Control Unit (ECU) to ECU or ECU (Electronic Control Unit) to sensor, requirement for flow of data increased in-turn resulting in increased need for secure communication. In this paper, we focus on functional verification and validation of secure Controller Area Network (CAN) for intra vehicular communication to establish confidentiality, integrity, authenticity, and freshness of data, supporting safety, advanced automation, protection of sensitive data and IP (Intellectual Property) protection. Network security algorithms and software security processes are the layers supporting to achieve our cause.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. ...Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. ...Initially, we transform cybersecurity guidelines to attack trees, and then we use their formal interpretations to assess the vehicle’s design.
Research Report

Impact of Electric Vehicle Charging on Grid Energy Buffering

2022-09-26
EPR2022022
Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering required by a VRE-intensive grid.
Technical Paper

Managing Trust Along the CAN Bus

2022-03-29
2022-01-0119
Multiple approaches have been created to enhance intra-vehicle communications security over the past three decades since the introduction of the Controller Area Network (CAN) protocol. The twin pair differential-mode communications bus is tremendously robust in the face of interference, yet physical access to the bus offers a variety of potential attack vectors whereby false messages and/or denial of service are achievable. This paper evaluates extensions of a Physical-layer (PHY) common-mode watermark-based authentication technique recently developed to improve authentication on the CAN bus by considering the watermark as a side-channel communications means for high value information. We also propose and analyze higher layer algorithms, with benefits and pitfalls, for employing the watermark as a physical-layer firewall.
Technical Paper

Research on CAN Network Security Aspects and Intrusion Detection Design

2017-09-23
2017-01-2007
With the rapid development of vehicle intelligent and networking technology, the IT security of automotive systems becomes an important area of research. In addition to the basic vehicle control, intelligent advanced driver assistance systems, infotainment systems will all exchange data with in-vehicle network. Unfortunately, current communication network protocols, including Controller Area Network (CAN), FlexRay, MOST, and LIN have no security services, such as authentication or encryption, etc. Therefore, the vehicle are unprotected against malicious attacks. Since CAN bus is actually the most widely used field bus for in-vehicle communications in current automobiles, the security aspects of CAN bus is focused on. Based on the analysis of the current research status of CAN bus network security, this paper summarizes the CAN bus potential security vulnerabilities and the attack means.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

2017-09-23
2017-01-2005
Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
X