Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

Dyno-in-the-Loop: An Innovative Hardware-in-the-Loop Development and Testing Platform for Emerging Mobility Technologies

Today’s transportation is quickly transforming with the nascent advent of connectivity, automation, shared-mobility, and electrification. These technologies will not only affect our safety and mobility, but also our energy consumption, and environment. As a result, it is of unprecedented importance to understand the overall system impacts due to the introduction of these emerging technologies and concepts. Existing modeling tools are not able to effectively capture the implications of these technologies, not to mention accurately and reliably evaluating their effectiveness with a reasonable scope. To address these gaps, a dynamometer-in-the-loop (DiL) development and testing approach is proposed which integrates test vehicle(s), chassis dynamometer, and high fidelity traffic simulation tools, in order to achieve a balance between the model accuracy and scalability of environmental analysis for the next generation of transportation systems.
Technical Paper

Hypervisor Implementation in Vehicle Networks

The hypervisor offers many benefits to the vehicle architecture, both operationally and with cybersecurity. The proposed mitigant provides the structure to partition the various VMs. This allows for the different functions to be managed within their own distinct VM. ...While the cybersecurity applications are numerous, there are also the operational benefits. The hypervisor is designed to not only manage the VMs, but also to increase the efficiency of these via resource management.
Technical Paper

Information Security Risk Management of Vehicles

The results of this work is allowed to identify a number of cybersecurity threats of the automated security-critical automotive systems, which reduces the efficiency of operation, road safety and system safety. ...According to the evaluating criterion of board electronics, the presence of poorly-protected communication channels, the 75% of the researched modern vehicles do not meet the minimum requirements of cybersecurity due to the danger of external blocking of vital systems. The revealed vulnerabilities of the security-critical automotive systems lead to the necessity of developing methods for mechanical and electronic protection of the modern vehicle. ...The law of normal distribution of the mid-points of the expert evaluation of the cyber-security of a modern vehicle has been determined. Based on the system approach, ranking of the main cybersecurity treats is performed.
Technical Paper

Optimizing CAN Bus Security with In-Place Cryptography

In-vehicle networks used for inter-ECU communication, most commonly the CAN bus, were not designed with cybersecurity in mind, and as a result, communication by corrupt devices connected to the bus is not authenticated.
Technical Paper

Proposal of HILS-Based In-Vehicle Network Security Verification Environment

We propose a security-testing framework to analyze attack feasibilities for automotive control software by integrating model-based development with model checking techniques. Many studies have pointed out the vulnerabilities in the Controller Area Network (CAN) protocol, which is widely used in in-vehicle network systems. However, many security attacks on automobiles did not explicitly consider the transmission timing of CAN packets to realize vulnerabilities. Additionally, in terms of security testing for automobiles, most existing studies have only focused on the generation of the testing packets to realize vulnerabilities, but they did not consider the timing of invoking a security testing. Therefore, we focus on the transmit timing of CAN packets to realize vulnerabilities. In our experiments, we have demonstrated the classification of feasible attacks at the early development phase by integrating the model checking techniques into a virtualized environment.
Technical Paper

Research on CAN Network Security Aspects and Intrusion Detection Design

With the rapid development of vehicle intelligent and networking technology, the IT security of automotive systems becomes an important area of research. In addition to the basic vehicle control, intelligent advanced driver assistance systems, infotainment systems will all exchange data with in-vehicle network. Unfortunately, current communication network protocols, including Controller Area Network (CAN), FlexRay, MOST, and LIN have no security services, such as authentication or encryption, etc. Therefore, the vehicle are unprotected against malicious attacks. Since CAN bus is actually the most widely used field bus for in-vehicle communications in current automobiles, the security aspects of CAN bus is focused on. Based on the analysis of the current research status of CAN bus network security, this paper summarizes the CAN bus potential security vulnerabilities and the attack means.
Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Technical Paper

Securing J1939 Communications Using Strong Encryption with FIPS 140-2

Since 2001, all sensitive information of U.S. Federal Agencies has been protected by strong encryption mandated by the Federal Information Processing Standards (FIPS) 140-2 Security Requirements. The requirements specify a formal certification process. The process ensures that validated encryption modules have implemented the standard, and have passed a rigorous testing and review processes. Today, this same strong security protection has become possible for vehicle networks using modern, cost-effective encryption in hardware. This paper introduces the motivation and context for the encryption diagnostics security in terms of all vehicles in general, not just trucks which use SAE J1939 communications. Several practical scenarios for using such encryption hardware and the advantages of using hardware compared to software private-key encryption and public-key encryption are described.