Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Novel Assessment and Administration Method of Autonomous Vehicle

2020-04-14
2020-01-0708
As a promising strategic industry group that is rapidly evolving around the world, autonomous vehicle is entering a critical phase of commercialization from demonstration to end markets. The global automotive industry and governments are facing new common topics and challenges brought by autonomous vehicle, such as how to test, assess, and administrate the autonomous vehicle to ensure their safe running in real traffic situations and proper interactions with other road users. Starting from the facts that the way to autonomous driving is the process of a robot or a machine taking over driving tasks from a human. This paper summarizes the main characteristics of autonomous vehicle which are different from traditional one, then demonstrates the limitations of the existing certification mechanism and related testing methods when applied to autonomous vehicle.
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

2020-04-14
2020-01-1291
Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Technical Paper

Adopting Aviation Safety Knowledge into the Discussions of Safe Implementation of Connected and Autonomous Road Vehicles

2021-04-06
2021-01-0074
The development of connected and autonomous vehicles (CAVs) is progressing fast. Yet, safety and standardization-related discussions are limited due to the recent nature of the sector. Despite the effort that is initiated to kick-start the study, awareness among practitioners is still low. Hence, further effort is required to stimulate this discussion. Among the available works on CAV safety, some of them take inspiration from the aviation sector that has strict safety regulations. The underlying reason is the experience that has been gained over the decades. However, the literature still lacks a thorough association between automation in aviation and the CAV from the safety perspective. As such, this paper motivates the adoption of safe-automation knowledge from aviation to facilitate safer CAV systems.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. ...Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles. ...As the domain geared up for the cybersecurity challenges, they leveraged experiences from many other domains, but must face several unique challenges.
Technical Paper

Buckendale Lecture Series: Transformational Technologies Reshaping Transportation—A Government Perspective

2018-09-01
2018-01-2011
Transportation departments are under-going a dramatic transformation, shifting from organizations focused primarily on building roads to a focus on mobility for all users. The transformation is the result of rapidly advancing autonomous vehicle technology and personal telecommunication technology. These technologies provide the opportunity to dramatically improve safety, mobility, and economic opportunity for society and industry. Future generations of engineers and other transportation professionals have the opportunity to be part of that societal change. This paper will focus on the technologies state DOT’s and the private sector are researching, developing, and deploying to promote the future of mobility and improved efficiency for commercial trucking through advancements in truck platooning, self-driving long-haul trucking, and automated last mile distribution networks.
Technical Paper

Building Responsibility in AI: Transparent AI for Highly Automated Vehicle Systems

2021-04-06
2021-01-0195
Replacing a human driver is an extraordinarily complex task. While machine learning (ML) and its’ subset, deep learning (DL) are fueling breakthroughs in everything from consumer mobile applications to image and gesture recognition, significant challenges remain. The majority of artificial intelligence (AI) learning applications, particularly with respect to Highly Automated Vehicles (HAVs) and their ecosystem have remained opaque - genuine “black boxes.” Data is loaded into one side of the ML system and results come out the other, however, there is little to no understanding at how the decision was arrived at. To make these systems accurate, these AI systems require lots of data to crunch and the sheer computational complexity of building these DL based AI models also slows down the progress in accuracy and the practicality of deploying DL at scale.
Technical Paper

Challenges in Integrating Cybersecurity into Existing Development Processes

2020-04-14
2020-01-0144
Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Journal Article

Chip and Board Level Digital Forensics of Cummins Heavy Vehicle Event Data Recorders

2020-04-14
2020-01-1326
Crashes involving Cummins powered heavy vehicles can damage the electronic control module (ECM) containing heavy vehicle event data recorder (HVEDR) records. When ECMs are broken and data cannot be extracted using vehicle diagnostics tools, more invasive and low-level techniques are needed to forensically preserve and decode HVEDR data. A technique for extracting non-volatile memory contents using non-destructive board level techniques through the available in-circuit debugging port is presented. Additional chip level data extraction techniques can also provide access to the HVEDR data. Once the data is obtained and preserved in a forensically sound manner, the binary record is decoded to reveal typical HVDER data like engine speed, vehicle speed, accelerator pedal position, and other status data. The memory contents from the ECM can be written to a surrogate and decoded with traditional maintenance and diagnostic software.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
Technical Paper

Connectivity in 2 Wheelers: Opportunities and Challenges

2019-11-21
2019-28-2437
Mobility is undergoing a “horses to cars”-sized shift that will reverberate across business and society for generations. Future of Mobility is mainly driven by 4 main pillars viz. Connected, Electrified, Automated and Shared Driving. With advancement in Communication Technology supplemented by huge customer base, Connectivity has proven to deliver better Services to the End-user. Connected Mobility is going to be the next Big Thing in the Mobility Arena. In this paper, we will try to qualitatively explore what Connected Mobility is all about and what it has to offer in terms of - Opportunities on one side as well as new challenges that were never witnessed in the realm of Mobility in the Past, with focus on the 2 wheeler segment. This paper focuses on Opportunities in terms of Location Based services, Vehicle Management, Data Analytics, Infotainment and possible Business scenarios and Models as well as challenges in Terms of Security and Data Ownership
Journal Article

Design Approach for Secure Networks to Introduce Data Analytics within the Aircraft Cabin

2019-09-16
2019-01-1853
In the past, aircraft network design did not demand for information security considerations. The aircraft systems were simple, obscure, proprietary and, most importantly for security, the systems have been either physically isolated or they have been connected by directed communication links. The union of the aircraft systems thus formed a federated network. These properties are in sharp contrast with today’s system designs, which rest upon platform-based solutions with shared resources being interconnected by a massively meshed and shared communication network. The resulting connectivity and the high number of interfaces require an in-depth security analysis as the systems also provide functions that are required for the safe operation of the aircraft. This network design evolution, however, resulted in an iterative and continuous adaption of existing network solutions as these have not been developed from scratch.
Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Dyno-in-the-Loop: An Innovative Hardware-in-the-Loop Development and Testing Platform for Emerging Mobility Technologies

2020-04-14
2020-01-1057
Today’s transportation is quickly transforming with the nascent advent of connectivity, automation, shared-mobility, and electrification. These technologies will not only affect our safety and mobility, but also our energy consumption, and environment. As a result, it is of unprecedented importance to understand the overall system impacts due to the introduction of these emerging technologies and concepts. Existing modeling tools are not able to effectively capture the implications of these technologies, not to mention accurately and reliably evaluating their effectiveness with a reasonable scope. To address these gaps, a dynamometer-in-the-loop (DiL) development and testing approach is proposed which integrates test vehicle(s), chassis dynamometer, and high fidelity traffic simulation tools, in order to achieve a balance between the model accuracy and scalability of environmental analysis for the next generation of transportation systems.
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Technical Paper

Foreseeable Misuse in Automated Driving Vehicles - The Human Factor in Fatal Accidents of Complex Automation

2017-03-28
2017-01-0059
Today, highly automated driving is paving the road for full autonomy. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today. As we transfer more responsibility, functionality and control from human to machine, technologies become more complex, less transparent and making constant safe-guarding a challenge. With automation, potential misuse and insufficient system safety design are important factors that can cause fatal accidents, such as in TESLA autopilot incident.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Journal Article

Implementation Methodologies for Simulation as a Service (SaaS) to Develop ADAS Applications

2021-04-06
2021-01-0116
Over the years, the complexity of autonomous vehicle development (and concurrently the verification and validation) has grown tremendously in terms of component-, subsystem- and system-level interactions between autonomy and the human users. Simulation-based testing holds significant promise in helping to identify both problematic interactions between component-, subsystem-, and system-levels as well as overcoming delays typically introduced by the default full-scale on-road testing. Software in Loop (SiL) simulation is utilized as an intermediate step towards software deployment for autonomous vehicles (AV) to make them reliable. SiL efforts can help reduce the resources required for successful deployment by helping to validate the software for millions of road miles. A key enabler for accelerating SiL processes is the ability to use Simulation as a Service (SaaS) rather than just isolated instances of software.
X