Refine Your Search

Topic

Search Results

Standard

CAN FD Data Link Layer

2021-03-22
HISTORICAL
J1939-22_202103
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Standard

CAN FD Data Link Layer

2023-04-25
WIP
J1939-22
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Best Practice

CSPR Framework Technical Report

2023-01-04
CURRENT
SMSOLUTIONS0123
SMSOLUTIONS0123 represents the work of a team of policy and technical leaders from over a dozen forward-leaning organizations in the ground vehicle industry and government. When asked where Sustainable Mobility Solutions could best apply the capabilities SAE has developed over a century, the SMS group responded without hesitation: address EV charging system failure. The group determined to aggregate charging session data with the view to create a consistent data dictionary and analysis practice. Adopting agile work practices, it studied these data, vetting and iterating its solution with the objective of producing a technical report in approximately half the time required in normal standardization. The resulting document, EV Charging Infrastructure: Charging System Performance Reporting, is informing work by the U.S. Department of Energy and Departments of Energy and Transportation Joint Office, as well as OEMs and suppliers.
Standard

Cybersecurity for Propulsion Systems

2023-09-05
CURRENT
AIR7368
The purpose of this SAE Aerospace Information Report (AIR) is to provide guidance for aircraft engine and propeller systems (hereafter referred to as propulsion systems) certification for cybersecurity. Compliance for cybersecurity requires that the engine control, propeller control, monitoring system, and all auxiliary equipment systems and networks associated with the propulsion system (such as nacelle systems, overspeed governors, and thrust reversers) be protected from intentional unauthorized electronic interactions (IUEI) that may result in an adverse effect on the safety of the propulsion system or the airplane.
Standard

Diagnostic Link Connector Security

2018-06-02
HISTORICAL
J3138_201806
This document describes some of the actions that should be taken to help ensure safe vehicle operation in the case that any such connected device (external test equipment, connected data collection device) has been compromised by a source external to the vehicle. In particular, this document describes those actions specifically related to SAE J1979, ISO 15765, and ISO 14229 standardized diagnostic services. Generally, the following forms of communication bus connection topologies are used in current vehicles: a Open access to communication buses b Communication buses isolated via a gateway c Hybrid combinations of a. and b.
Standard

Diagnostic Link Connector Security

2022-10-04
CURRENT
J3138_202210
This document describes a set of recommended actions to take to increase the likelihood of safe vehicle operation when a device (external test equipment, data collection device, etc.) whose normal operation has been compromised by a source external to the vehicle is connected to the vehicle’s diagnostic system. The term “diagnostic system” is intended to be a generic way to reference all the different ways that diagnostic commands might be injected into the system. The guidance in this document is intended to improve security without significantly impacting the ability for franchised dealer or independent aftermarket external test tools to perform legitimate diagnosis and maintenance functions. The goal is that intrusive services are only allowed to be performed when the vehicle is in a Safe State such that even if the intrusive service were to be initiated with adversarial intent the consequences of such a service would still be acceptable.
Standard

E/E DATA LINK SECURITY

1996-10-01
HISTORICAL
J2186_199610
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Standard

EXPANDED DIAGNOSTIC PROTOCOL FOR OBD II SCAN TOOLS

1995-12-01
HISTORICAL
J2205_199512
This SAE Recommended Practice defines the Expanded Diagnostic Protocol (EDP), the requirements for the SAE J1978 OBD II Scan Tool for supporting the EDP protocol, and associated requirements for diagnosis and service information to be provided by motor vehicle manufacturers. Appendix A includes worked examples of the use of the protocol.
Standard

EXPANDED DIAGNOSTIC PROTOCOL FOR OBD II SCAN TOOLS

1994-06-01
HISTORICAL
J2205_199406
This SAE Recommended Practice defines the Expanded Diagnostic Protocol (EDP), the requirements for the SAE J1978 OBD II Scan Tool for supporting the EDP protocol, and associated requirements for diagnosis and service information to be provided by motor vehicle manufacturers. Appendix A includes worked examples of the use of the protocol.
Standard

Electron Beam Powder Bed Fusion Process

2020-07-01
CURRENT
AMS7007
This specification establishes process controls for the repeatable production of aerospace parts by Electron Beam Powder Bed Fusion (EB-PBF). It is intended to be used for aerospace parts manufactured using additive manufacturing (AM) metal alloys, but usage is not limited to such applications.
Standard

GUIDANCE FOR SECURITY EVENT LOGGING IN AN IP ENVIRONMENT

2017-06-21
CURRENT
ARINC852
This report sets forth guidance for IP-based onboard networks and systems residing in the Airline Information Services (AIS) and Passenger Information and Entertainment Services (PIES) Domains by establishing a common set of security related data elements and format(s) that are produced by aircraft systems, suitable for use by airline IT and/or avionic supplier analytical ground tools.
Standard

Hardware Protected Security for Ground Vehicles

2020-02-10
CURRENT
J3101_202002
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
Standard

Instructions for Using Plug-In Electric Vehicle (PEV) Communications, Interoperability and Security Documents

2018-07-18
CURRENT
J2836_201807
This SAE Information Report J2836 establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability and security. This includes the history, current status and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., (1) if I want to do V2G with an off-board inverter, what documents and items within them do I need, (2) What do we intend for V3 of SAE J2953, …).
Standard

Laser Powder Bed Fusion Process

2022-08-05
CURRENT
AMS7003A
This specification establishes process controls for the repeatable production of aerospace parts by Laser Powder Bed Fusion (L-PBF). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Standard

Permanently or Semi-Permanently Installed Diagnostic Communication Devices, Security Guidelines

2020-03-04
CURRENT
J3005-2_202003
The scope of the document is to define the cyber-security best practices to reduce interference with normal vehicle operation, or to minimize risk as to unauthorized access of the vehicle's control, diagnostic, or data storage system; access by equipment (i.e., permanently or semi-permanently installed diagnostic communication device, also known as dongle, etc.) which is either permanently or semi-permanently connected to the vehicle's OBD diagnostic connector, either SAE J1939-13, SAE J1962, or other future protocol; or hardwired directly to the in-vehicle network.
Standard

SAE J1939 Network Security

2017-03-06
WIP
J1939-91
This document will provide recommendations to vehicle manufacturers and component suppliers in securing the SAE J1939-13 connector interface from the cybersecurity risks posed by the existence of this connector.
Standard

Security Recommendations for Interfaces to On-vehicle Networks

2021-08-06
WIP
J1939-91A
This document will provide recommendations to vehicle manufacturers and component suppliers in securing the SAE J1939 network from the cybersecurity risks. It is recognized that not every application of SAE J1939 networks requires the same level of cyber security measures.
X