Refine Your Search


Search Results

Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Technical Paper

A Safety and Security Testbed for Assured Autonomy in Vehicles

Connectivity and autonomy in vehicles promise improved efficiency, safety and comfort. The increasing use of embedded systems and the cyber element bring with them many challenges regarding cyberattacks which can seriously compromise driver and passenger safety. Beyond penetration testing, assessment of the security vulnerabilities of a component must be done through the design phase of its life cycle. This paper describes the development of a benchtop testbed which allows for the assurance of safety and security of components with all capabilities from Model-in-loop to Software-in-loop to Hardware-in-loop testing. Environment simulation is obtained using the AV simulator, CARLA which provides realistic scenarios and sensor information such as Radar, Lidar etc. MATLAB runs the vehicle, powertrain and control models of the vehicle allowing for the implementation and testing of customized models and algorithms.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

Anomaly-Based Intrusion Detection Using the Density Estimation of Reception Cycle Periods for In-Vehicle Networks

Abstract The automotive industry intends to create new services that involve sharing vehicle control information via a wide area network. In modern vehicles, an in-vehicle network shares information between more than 70 electronic control units (ECUs) inside a vehicle while it is driven. However, such a complicated system configuration can result in security vulnerabilities. The possibility of cyber-attacks on vehicles via external services has been demonstrated in many research projects. As advances in vehicle systems (e.g., autonomous drive) progress, the number of vulnerabilities to be exploited by cyber-attacks will also increase. Therefore, future vehicles need security measures to detect unknown cyber-attacks. We propose anomaly-based intrusion detection to detect unknown cyber-attacks for the Control Area Network (CAN) protocol, which is popular as a communication protocol for in-vehicle networks.
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
Technical Paper

CAN Crypto FPGA Chip to Secure Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms with A Symmetric Key

Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller area network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to be encrypted and secured. With this new feature of CAN FD, we propose a hardware design - CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. AES-128 algorithm will provide confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) will provide integrity and authentication of CAN message. The design has been modeled and verified by using Verilog HDL – a hardware description language, and implemented successfully into Xilinx FPGA chip by using simulation tool ISE (Xilinx).
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).

Data Acquisition from Light-Duty Vehicles Using OBD and CAN

Modern vehicles have multiple electronic control units (ECU) to control various subsystems such as the engine, brakes, steering, air conditioning, and infotainment. These ECUs are networked together to share information directly with each other. This in-vehicle network provides a data opportunity for improved maintenance, fleet management, warranty and legal issues, reliability, and accident reconstruction. Data Acquisition from Light-Duty Vehicles Using OBD and CAN is a guide for the reader on how to acquire and correctly interpret data from the in-vehicle network of light-duty (LD) vehicles. The reader will learn how to determine what data is available on the vehicle's network, acquire messages and convert them to scaled engineering parameters, apply more than 25 applicable standards, and understand 15 important test modes.

Deliverable Aerospace Software Supplement for AS9100A Quality Management Systems - Aerospace - Requirements for Software (based on AS9100A)

The basic requirements of AS9100A apply with the following clarifications. This document supplements the requirements of AS9100A for deliverable software. This supplement contains Quality System requirements for suppliers of products that contain deliverable embedded or loadable airborne, spaceborne or ground support software components that are part of an aircraft Type Design, weapon system, missile or spacecraft operational software and/or support software that is used in the development and maintenance of deliverable software. This includes the host operating system software including assemblers, compilers, linkers, loaders, editors, code generators, analyzers, ground simulators and trainers, flight test data reduction, etc., that directly support creation, test and maintenance of the deliverable software.

Diagnostic Link Connector Security

This document describes some of the actions that should be taken to help ensure safe vehicle operation in the case that any such connected device (external test equipment, connected data collection device) has been compromised by a source external to the vehicle. In particular, this document describes those actions specifically related to SAE J1979, ISO 15765, and ISO 14229 standardized diagnostic services. Generally, the following forms of communication bus connection topologies are used in current vehicles: a Open access to communication buses b Communication buses isolated via a gateway c Hybrid combinations of a. and b.

Digital Communications for Plug-in Electric Vehicles

This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the third version of this document and completes the effort that specifies the digital communication protocol stack between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). The purpose of the stack outlined in Figure 1 and defined by Layers 3 to 6 of the OSI Reference Model (Figure 1) is to use the functions of Layers 1 and 2 specified in SAE J2931/4 and export the functionalities to Layer 7 as specified in SAE J2847/2 (as of August 1, 2012, revision) and SAE J2847/1 (targeting revision at the end of 2012).

E/E Data Link Security

This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.

E/E Data Link Security

This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Journal Article

Exploiting Channel Distortion for Transmitter Identification for In-Vehicle Network Security

Abstract Cyberattacks on financial and government institutions, critical infrastructure, voting systems, businesses, modern vehicles, and so on are on the rise. Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. This is due to the fact that the industry still relies on controller area network (CAN) protocol for in-vehicle control networks. The CAN protocol lacks basic security features such as message authentication, which makes it vulnerable to a wide range of attacks including spoofing attacks. This article presents a novel method to protect CAN protocol against packet spoofing, replay, and denial of service (DoS) attacks. The proposed method exploits physical uncolonable attributes in the physical channel between transmitting and destination nodes and uses them for linking the received packet to the source.

Nvidia partners with AdaCore to secure self-driving firmware

As mobility software becomes increasingly complex and connected, so does the risk of human error and system safety. To combat this, New York-based software company AdaCore will work with Nvidia Corporation of Santa Clara, California to apply open-source Ada and SPARK programming languages for select software security firmware elements in highly-complex, safety-critical systems like Nvidia’s DRIVE AGX automated and autonomous vehicle solutions.
Journal Article

Real-Time Network Defense of SAE J1939 Address Claim Attacks

Abstract Heavy vehicles are essential for the modern economy, delivering critical food, supplies, and freight throughout the world. Connected heavy vehicles are also driven by embedded computers that utilize internal communication using common standards. However, some implementations of the standards leave an opening for a malicious actor to abuse the system. One such abuse case is a cyber-attack known as the “Address Claim Attack.” Proposed in 2018, this attack uses a single network message to disable all communication to and from a target electronic control unit, which may have a detrimental effect on operating the vehicle. This article demonstrates the viability of the attack and then describes the implementation of a solution to prevent this attack in real time without requiring any intervention from the manufacturer of the target devices. The defense technique uses a bit-banged Controller Area Network (CAN) filter to detect the attack.
Journal Article

Security Certificate Management System for V2V Communication in China

Abstract Vehicle-to-Vehicle (V2V) communication is a vehicular communication technology to reduce traffic accidents and congestion. To protect V2V communication, multiple security standards have been developed. This article provides an overview of the China V2V security draft standard and compares it to the American IEEE1609.2 V2V standard and to the Security Credential Management System (SCMS). The article provides an overview of the Chinese cryptographic algorithms used in the China V2V standard, and points out differences in the certificate format, such as the lack of implicit certificates in the China V2V standard. The China V2V PKI architecture is similar to the American SCMS, however, the Chinese system utilizes a set of Root Certificate Authorities (CA) that are trusted via an out-of-band channel whereas the American SCMS supports elector-based addition and revocation of Root CAs.