Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Diagnostic Strategies for Advanced Automotive Systems

2002-10-21
2002-21-0024
In recent years, the desire for improved vehicle performance, reliability and safety have increased the electrical content and its complexity in vehicles. Advanced automotive systems integrate sensors, controllers, actuators and communication networks. To maintain safety and reliability, a comprehensive system of diagnostics and physical and analytic redundancy are used. In some cases, diagnostic strategies based on analytical redundancy can provide detection, as well as fault-tolerance, and may provide benefits in cost, packaging, flexibility and reusability. This paper discusses a range of diagnostic methods and their applicability to advanced automotive systems such as X-by-Wire. It will also show the reduction to practice of an advanced analytical technique for an automotive application.
Technical Paper

Reliability of Resonant Micromachined Sensors and Actuators

2001-03-05
2001-01-0618
There are an increasing number of applications for resonant micromachines. Accelerometers, angular rate sensors, voltage controlled oscillators, pressure and chemical sensors have been demonstrated using this technology. Several of these devices are employed in vehicles. Vibrating devices have been made from silicon, quartz, GaAs, nickel and aluminum. Resonant microsystems are in constant motion and so present new challenges in the area of reliability for vehicular applications. The impact of temperature extremes, cyclic fatigue, stiction, thermal and mechanical shock on resonant device performance is covered.
Technical Paper

Smart Sensors for Future Robust Systems

2000-11-01
2000-01-C055
"Smart'' sensor concepts must be considered as the demands of advanced automotive systems increase. These concepts are strongly influenced by the architectural and dependability aspects of future systems. Key features of smart sensors are: communication (two way) with a digital data bus, self- calibration, error source compensation, self-diagnostics, and programmability for "plug and play.'' This paper contains a discussion of the basic future sensor requirements, and it assesses four major sensor technologies with respect to their suitability to meet these requirements. For each technology, the merits and demerits will be reviewed and an example sensing application will be given in order to demonstrate how the technology can be adapted to meet the future requirements.
X