Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
In this paper, we will touch upon the concept of the "safety state diagram,' which encompasses a host of variables or "zones' such as; vehicle motion, occupant-state and accident to post accident states. Highlights include concepts such as pre-crash sensing, anticipatory crash sensing, X-by-wire, advanced safety interiors, and smart safety systems. ...., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. ...., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. ...Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident.
Technical Paper

US and UK Belted Driver Injuries with and without Airbag Deployments - A Field Data Analysis

1999-03-01
1999-01-0633
For the study, only airbag-equipped cars were considered. Two accident databases were used: 1) the weighted and unweighted National Accident Sampling System (NASS-CDS) from the US, calendar years 1995 to 1996, and 2) the unweighted Co-operative Crash Injury Study (CCIS) from the UK, calendar years 1992 to 1998. ...In the US, 6 out of 47 deployed cases involving a severely injured (ISS > 12) driver occurred in a low speed accident (ETS < 14 mph). There were no severely injured US drivers in low-speed crashes without an airbag deployment.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. ...The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate.
Technical Paper

Driver Injuries in US Single-Event Rollovers

2000-03-06
2000-01-0633
The purpose of this paper is to investigate occupant injuries which may be sustained during a single-event crash with known roll mechanism. The data was obtained from the weighted National Automotive Sampling System/ Crashworthiness Data System (NASS-CDS) for calendar years 1992 to 1996. The effect of number of rollover turns, roll direction, ejection and belt usage on driver injury responses was analyzed in single-event trip-overs. Trip-overs were chosen for the analysis because they account for over 50% of rollover crashes. The number of rollovers was divided in 3 categories: ¼ to ½ turn, ¾ to 1 turn and above 1 turn. Roll direction was either roll-left or a rollright along the longitudinal axis of the vehicle. Roll-left represents a roll with the driver side leading, while a roll right is with the right front passenger side leading. In the database used in this study, there were three times more belted drivers than unbelted.
Technical Paper

The Effectiveness of Adjustable Pedals Usage

2000-03-06
2000-01-0172
This study evaluates the comfort benefits of adjustable pedals by determining their effect on the distance between the occupant and steering wheel, occupant posture and foot kinematics. For the study, 20 volunteers were tested in a small and large vehicle equipped with adjustable pedals. Twenty volunteers were tested in a small and large vehicle at 3 pedal positions: normal, comfortable and maximum tolerable. In the small car, the decrease in ankle-to-steering wheel distance between the normal and comfortable position was higher in the short-statured group than the medium group. The mean change in chest-to-steering wheel distance was about 50 mm in the medium and in the order of 40 mm in the short group. The seatback angle increased by 2° in the medium group and decreased by 3° in the short group. In the large car, the decrease in ankle-to-steering wheel distance between comfortable and the normal position was about 70 mm in the short-statured and medium group.
Technical Paper

Consumers, Electronics, and the Link to Hybrid Vehicles and the Environment

2000-11-01
2000-01-C045
The interdependence of consumer features, new electronic and electrical architectures and hybrid propulsion systems are examined. There are two major forces driving future vehicle electronic and electrical systems, one is consumer demand for comfort and safety, and two is the demand for reduced fuel consumption and emissions. These forces are linked by the use of electronics to control vehicle energy generation and usage while providing managed solutions to these demands. Automobile consumer features are discussed and the case is made that these features will require more electric power to be installed on the vehicle. The presence of this increased electric power will then enable the hybrid vehicle functions that will benefit fuel economy and emissions performance.
Technical Paper

Diagnostic Development for an Electric Power Steering System

2000-03-06
2000-01-0819
Electric power steering (EPS) is an advanced steering system that uses an electric motor to provide steering assist. Being a new technology it lacks the extensive operational history of conventional steering systems. Also conventional systems cannot be used to command an output independent of the driver input. In contrast EPS, by means of an electric motor, could be used to do so. As a result EPS systems may have additional failure modes, which need to be studied. In this paper we will consider the requirements for successful EPS operation. The steps required to develop diagnostics based on the requirements are also discussed. The results of this paper have been implemented in various EPS-based programs.
Technical Paper

Suppression Technologies for Advanced Air Bags

2000-11-01
2000-01-C037
In May 2000 the National Highway Traffic Safety Administration (NHTSA) issued the final rule for the Advanced Air Bag regulations effective MY 2004 for vehicles to be sold in the United States. These regulations are in response to the air bag-induced injuries seen in the field, especially to children and short women. Advanced air bags require a vehicle manufacturer to design air bags for a broad array of occupants: 12-month-old, 3-year-old and 6-year-old children, and 5th percentile adult females, as well as 50th percentile adult males with new and more stringent injury criteria. Requirements for minimizing air bag risks include automatically turning off the air bag in the presence of young children or deploying the air bag in a manner much less likely to cause serious or fatal injury to out-of-position occupants. Technologies that disable the air bag in the presence of young children or adults in out-of-position are termed as "suppression technologies.'
X