Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Clustering and Scaling of Naturalistic Forward Collision Warning Events Based on Expert Judgments

The objectives of this study were a) to determine how expert judges categorized valid Integrated Vehicle-Based Safety Systems (IVBSS) Forward Collision Warning (FCW) events from review of naturalistic driving data; and b) to determine how consistent these categorizations were across the judges working in pairs. FCW event data were gathered from 108 drivers who drove instrumented vehicles for 6 weeks each. The data included video of the driver and road scene ahead, beside, and behind the vehicle; audio of the FCW alert onset; and engineering data such as speed and braking applications. Six automotive safety experts examined 197 ‘valid’ (i.e., conditions met design intent) FCW events and categorized each according to a taxonomy of primary contributing factors. Results indicated that of these valid FCW events, between 55% and 73% could be considered ‘nuisance alerts’ by the driver.

Road Vehicle Dynamics

This book provides a detailed and well-rounded overview of the dynamics of road vehicle systems. Readers will come to understand how physical laws, human factor considerations, and design choices come together to affect a vehicle's ride, handling, braking, and acceleration. Following an introduction and general review of dynamics, topics include: analysis of dynamic systems; tire dynamics; ride dynamics; vehicle rollover analysis; handling dynamics; braking; acceleration; and total vehicle dynamics.
Technical Paper

Automotive Obstacle Detection Systems: a Survey of Design Requirements and Vehicle Integration Issues

Obstacle detection technology has made significant progress in the last five years in the important product areas of quality, performance and affordability. Ford Motor Company's market research indicates that our customers are very interested in new safety features. Drivers consider obstacle detection and collision warning technology as the next breakthrough in safety technology. Ford recognizes the importance of moving from the collision mitigation to the collision avoidance paradigm. Fortunately, the first step in collision avoidance can be taken by equipping the vehicle with reliable and affordable obstacle detection sensors
Technical Paper

Real-time Determination of Driver's Handling Behavior

This paper proposes an approach to determine driver's driving behavior, style or habit during vehicle handling maneuvers and heavy traction and braking events in real-time. It utilizes intelligence inferred from driver's control inputs, vehicle dynamics states, measured signals, and variables processed inside existing control modules such as those of anti-lock braking, traction control, and electronic stability control systems. The algorithm developed for the proposed approach has been experimentally validated and shows the effectiveness in characterizing driver's handling behavior. Such driver behavior can be used for personalizing vehicle electronic controls, driver assistant and active safety systems, and the other vehicle control features.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.