Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A 1D/Quasi-3D Coupled Model for the Simulation of I.C. Engines: Development and Application of an Automatic Cell-Network Generator

2017-03-28
2017-01-0514
Nowadays quasi-3D approaches are included in many commercial and research 1D numerical codes, in order to increase their simulation accuracy in presence of complex shape 3D volumes, e.g. plenums and silencers. In particular, these are regarded as valuable approaches for application during the design phase of an engine, for their capability of predicting non-planar waves motion and, on the other hand, for their low requirements in terms of computational runtime. However, the generation of a high-quality quasi-3D computational grid is not always straightforward, especially in case of complex elements, and can be a time-consuming operation, making the quasi-3D tool a less attractive option. In this work, a quasi-3D module has been implemented on the basis of the open-source CFD code OpenFOAM and coupled with the 1D code GASDYN.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Quasi-3D Model for the Simulation of the Unsteady Flows in I.C. Engine Pipe Systems

2012-04-16
2012-01-0675
A second step focused on the study of the acoustic perfomance of a cylindrical expansion chamber with the aim of investigating the dissipation introduced by the flux limiter and the importance of the shape reconstruction for capturing higher order modes. The final validation was carried out on a single-cylinder engine for motorbike application, where the components exhibiting a high degree of complexity, namely the airbox and the silencer, were modeled by means of the quasi-3D. following a pure geometrical shape recontruction criterion.
Technical Paper

A Study on the Hole-to-Hole Spray Variation Based on Nozzle Internal Structure

2013-04-08
2013-01-1611
Spray behavior is regarded as one of main factors which influence engine performance, fuel consumption and emissions for diesel engine. In practice, spray characteristics from each orifice from a multi-hole nozzle are normally arranged symmetrically, while the hole-to-hole spray variation is unavoidable. This variation will cause spatial uneven distribution of spray and combustion degrade, which will be no longer inconsiderable in face of the more and more stringent emission rules. In this paper, two methods including spray macro-characteristics experiment and separated fuel mass measurement are employed to test the hole-to-hole spray variation of two six-hole symmetric VCO injectors of different brands, and experiments are operated under different conditions including different injection pressures, back pressures and injection durations.
Journal Article

Accelerated Testing of Brake Hoses for Durability Assessment

2017-03-28
2017-01-0389
The durability performance of brake hoses is a crucial issue for such components. Accelerated fatigue testing of brake hoses is necessary for understanding achievable lifetime, actually computation of durability is quite cumbersome due to the many different materials the hoses are made from. Despite SAE standards are available, accelerated testing of brake hoses subject to actual torsional and bending stresses seem important to provide relevant feedback to designers. In this paper, an innovative methodology for assessing the fatigue behavior of brake hoses of road vehicles is proposed. A dynamic testbed is specifically designed and realized, able to reproduce the actual assembly conditions of the hoses fitted into a vehicle suspension. The designed testbed allows to replicate actual loading conditions on the brake hoses by simulating the vertical dynamics and steering of the suspension system together with brake pressure.
Technical Paper

Analysis of Vehicle Performance at the FutureTruck 2002 Competition

2003-03-03
2003-01-1255
In June of 2002, 15 universities participated in the third year of FutureTruck, an advanced vehicle competition sponsored by the U.S. Department of Energy and Ford Motor Company. Using advanced technologies, teams strived to improve vehicle energy efficiency by at least 25%, reduce tailpipe emissions to ULEV levels, and lower greenhouse gas impact of a 2002 Ford Explorer. The competition vehicles were tested for dynamic performance and emissions and were judged in static events to evaluate the design and features of the vehicle. The dynamic events include braking, acceleration, handling, and fuel economy, while the dynamometer testing provided data for both the emissions event and the greenhouse gas event. The vehicles were scored for their performance in each event relative to each other; those scores were summed to determine the winner of the competition. The competition structure included different available fuels and encouraged the use of hybrid electric drivetrains.
Journal Article

Buckling Analysis of Uncertain Structures Using Imprecise Probability

2015-04-14
2015-01-0485
In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, catastrophic deformations such as buckling must be prevented. Using the linear finite element method, deterministic buckling analysis is completed in two main steps. First, a static analysis is performed using an arbitrary ordinate applied loading pattern. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, an eigenvalue problem is performed between structure's elastic and geometric stiffness matrices, yielding the structure's critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure's material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed. An imprecise probability formulation is used to quantify the uncertainty present in the mechanical characteristics of the structure.
Technical Paper

CFD and X-Ray Analysis of Gaseous Direct Injection from an Outward Opening Injector

2016-04-05
2016-01-0850
Using natural gas in an internal combustion engine (ICE) is emerging as a promising way to improve thermal efficiency and reduce exhaust emissions. In the development of such engine platforms, computational fluid dynamics (CFD) plays a fundamental role in the optimization of geometries and operating parameters. One of the most relevant issues in the simulation of direct injection (DI) gaseous processes is the accurate prediction of the gas jet evolution. The simulation of the injection process for a gaseous fuel does not require complex modeling, nevertheless properly describing high-pressure gas jets remains a challenging task. At the exit of the nozzle, the injected gas is under-expanded, the flow becomes supersonic and shocks occur due to compressibility effects. These phenomena lead to challenging computational requirements resulting from high grid resolution and low computational time-steps.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm. ...Tomographic reconstruction for the ensemble-average fuel mass distribution (or liquid volume fraction) shows that the near-field mixing layers and growth are related to the nozzle exit geometry, with an intact liquid core moving downstream to approximately 2.5 mm.
Technical Paper

Comparison of Numerical and System Dynamics Methods for Modeling Wave Propagation in the Intake Manifold of a Single-Cylinder Engine

2013-09-08
2013-24-0139
The first approach is based on a quasi-3D finite volume method, which relies on a geometrical reconstruction of the calculation domain using networks of zero-dimensional elements. The second approach is based on a model-order reduction procedure that projects the nonlinear hyperbolic partial differential equations describing the 1D unsteady flow in engine manifolds onto a predefined basis.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Development Process of Shock Waves by Supersonic Spray

2004-03-08
2004-01-1769
A numerical simulation of shock wave generation by high-pressure and high-speed spray jet has been conducted to compare to the experimental results obtained by X-ray radiographic technique. Using the space-time conservation element solution element (CESE) method and the stochastic particle techniques to account for fuel injections and droplet collisions, supersonic-spray-induced shock waves are successfully simulated. Similar to the experimental condition, a non-evaporating diesel spray in a chamber filled with inert gas sulfur hexafluoride (SF6) at 1 atm pressure under room temperature (30° C) is simulated. To simulate the needle lift effect in the single-hole diesel injector, various injection-rate profiles were employed. In addition, the effects of discharge coefficients, with Cd ranging from 0.8 to 1.0, were also considered to simulate the shock generation processes in the leading spray front.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
Technical Paper

Development and Application of a Quasi-3D Model for the Simulation of Radial Compressors of Turbochargers for Internal Combustion Engines

2019-09-09
2019-24-0187
In this work the 3Dcell method, a quasi3D approach developed by the Internal Combustion Engine Group at Politecnico di Milano, has been extended and applied to the fluid dynamic simulation of turbocharging devices for internal combustion engines, focusing on the compressor side. The 3Dcell is based on a pseudo-staggered leapfrog method applied to the governing equation of a 1D problem arbitrarily oriented in space. The system of equations is solved referring to the relative system in the rotating zone, whereas the absolute reference system has been used elsewhere. The vaneless diffuser has been modelled resorting to the conservation of the angular momentum of the flow stream in the tangential direction, combined with the solution of the momentum equation in the radial direction.
Technical Paper

Development of Fully-Automatic Parallel Algorithms for Mesh Handling in the OpenFOAM®-2.2.x Technology

2013-09-08
2013-24-0027
The current development to set up an automatic procedure for automatic mesh generation and automatic mesh motion for internal combustion engine simulation in OpenFOAM®-2.2.x is here described. In order to automatically generate high-quality meshes of cylinder geometries, some technical issues need to be addressed: 1) automatic mesh generation should be able to control anisotropy and directionality of the grid; 2) during piston and valve motion, cells and faces must be introduced and removed without varying the overall area and volume of the cells, to avoid conservation errors. In particular, interpolation between discrete fields is frequent in computational physics: the use of adaptive and non-conformal meshes necessitates the interpolation of fields between different mesh regions. Interpolation problems also arise in areas such as model coupling, model initialization and visualisation.
Journal Article

Dynamic Response of Vehicle-Driver Couple to the Aerodynamic Loads due to the Crossing of a Bridge Tower Wake

2012-04-16
2012-01-0214
In the paper, a procedure to assess the quality of the shielding effect of wind barriers to protect large sided vehicles crossing the wake of a bridge pylon under cross wind conditions is proposed. The methodology is based on Multi-Body simulations of the response of the vehicle-driver system when it is subjected to the sudden change of the aerodynamic forces due to the wind-tower interaction. The aerodynamic forces that are instantaneously acting on the vehicle are computed according to a force distribution approach that relies on wind tunnel tests that may be performed on still scaled models. From the knowledge of the aerodynamic force distribution along the vehicle at different yaw angles and of the mean wind profile across the tower wake, the aerodynamic force, acting on the moving vehicle, is reconstructed at each time step taking into consideration the actual vehicle-driver dynamics.
Technical Paper

Dynamic Tests of Racing Seats and Simulation with Vedyac Code

1998-11-16
983059
Dynamic tests have been performed on carbon fiber racing seats following the FIA regulations. The tests have shown, in rear impact tests, a relatively strong rebound leading to large forward bending of neck, and, in side impact tests, very large lateral displacement of the head, the latter protruding dangerously towards hard portions of the car structure. Stiffening the seat back by steel struts results in reducing strongly both the motion and the acceleration of the head. Simulations of the dynamics of the tests have been done with multi-body models, including the Hybrid III dummy and seat deflection, by means of the program VEDYAC. It has been found that computer simulation can predict very accurately the result of a test, provided the numerical models have been carefully calibrated to match the dummy tolerance bands. Once they have been calibrated and validated with a number of tests, the computer models can be very useful to extend the test results to different test conditions.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
X