Refine Your Search

Topic

Search Results

Journal Article

Reconstructing Vehicle Dynamics from On-Board Event Data

2019-04-02
2019-01-0632
These predictions were generated by directly integrating the VCH data and by using the VCH data as inputs to PC-Crash simulations. The predicted positions and headings were then compared to the actual position and heading data measured using differential GPS synchronized to the VCH data record.
Technical Paper

An Analytical Review and Extension of Two Decades of Research Related to PC-Crash Simulation Software

2018-04-03
2018-01-0523
PC-Crash is a vehicular accident simulation software that is widely used by the accident reconstruction community. ...The goal of this article is to review the prior literature that has addressed the capabilities of PC-Crash and its accuracy and reliability for various applications (planar collisions, rollovers, and human motion). ...In addition, this article aims to add additional analysis of the capabilities of PC-Crash for simulating planar collisions and rollovers. Simulation analysis of five planar collisions originally reported and analyzed by Bailey [2000] are reexamined.
Technical Paper

An Investigation into C-NCAP AEB System Assessment Protocol

2017-09-23
2017-01-2009
In order to speed up the development of vehicle active safety technology in China, C-NCAP plans to add AEB and AEB VRU system as assessment items in 2018. With the purpose of studying the assessment protocol of AEB system, we have carried out 400,000 km road information collection and then we acquired the statistics of the operation conditions of dangerous situations. Combined with the traffic accident data collected by CIDAS, we found that the dangerous situations that we usually met were mainly three types, that was CCRs, CCRm and CCRb. Based on what we mentioned above, we analyzed the three kinds of working conditions and gave the corresponding evaluation method. In addition, combined with the actual situation of China, we added two tests of error function. And then we took the actual road experiment of many models of vehicles.
Technical Paper

Determination of Critical Speed, Slip Angle and Longitudinal Wheel Slip based on Yaw Marks Left by a Wheel with Zero Tire Pressure

2016-04-05
2016-01-1480
This article presents the results of an analysis of the yaw marks left by a car with normal pressure in all tires and then normal pressure in three tires and zero in one rear tire. The analysis is a continuation of research on influence of reduced tire pressure on car lateral dynamics in a passing maneuver, discussed in the SAE paper No. 2014-01-0466. Preliminary analysis of yaw marks has shown, that a wheel with zero pressure deposits a yaw mark whose geometry differs from the yaw mark made by a wheel with normal pressure based on which we could calculate: critical speed, slip angle and longitudinal wheel slip. The aim of the presented research was to analyze the yaw marks left by car with zero pressure in one rear wheel in order to check the possibility of determining the vehicle critical speed, slip angle and longitudinal wheel slip. It was reached by performing bench and road tests during which the vehicle motion parameters were recorded using GPS Data Logging System.
Technical Paper

Pedestrian Throw Distance Impact Speed Contour Plots Using PC-Crash

2015-04-14
2015-01-1418
However, based on investigated pedestrian collisions, the location where the pedestrian has engaged with the vehicle can and does significantly influence the throw distance (and projection) and subsequent impact speed analysis. PC-Crash was used to simulate multiple pedestrian impacts at varying speeds and vehicle impact locations, creating pedestrian throw distance impact speed contour plots.
Technical Paper

Vehicle Acceleration Modeling in PC-Crash

2014-04-01
2014-01-0464
The research reported here offers a validation of this capability, demonstrating that PC-Crash can be used to realistically model the build-up of a vehicle's speed under maximal acceleration. ...In the research reported here, PC-Crash 9.0 was used to model the full-throttle acceleration capabilities of three vehicles with automatic transmissions - a 2006 Ford Crown Victoria Police Interceptor (CVPI), a 2000 Cadillac DeVille DTS, and a 2003 Ford F150. ...In each case, the full-throttle acceleration of the vehicles modeled in PC-Crash showed good agreement with the acceleration of the real vehicles in our road tests.
Technical Paper

Uncertainty in Calculations Using Lambourn's Critical Speed Procedure

2013-04-08
2013-01-0779
Critical Speed Formula (CSF) belongs to the canon of tools used in reconstruction of vehicle accidents. It is used to calculate vehicle speed at the beginning of tire yaw marks and, together with the entire methodology of processing the information contained in the marks into the data, is often referred to as the Critical Speed Method (CSM). Its great practical importance as well as recurring doubts as to the reliability make it one of the best experimentally and theoretically studied methods. Although the CSF applies in fact to a point mass, it is used with reference to a vehicle, i.e., an increasingly complicated multi-body system. Accident reconstruction experts point out the particular usefulness of Lambourn's research concerning the CSM in respect to a passenger car.
Technical Paper

Measuring and Modeling Suspensions of Passenger Vehicles

2013-04-08
2013-01-0774
Numerical parameters describing suspension stiffness and damping are required for 3D simulation of vehicle trajectories, but may not be available. This paper outlines a simple, portable method of measuring these properties with a coefficient of variation of 5% on stiffness. 24 of 26 vehicles tested were significantly stiffer in roll than pitch, complicating analyses with models that don't include anti-roll. Suspension parameters did not correlate with static wheel load distribution, and damping coefficient did not correlate with natural frequency. Computer simulations of the speed required to initiate rollover in an S-curve were highly sensitive to the suspension parameters used. When pre-impact tire marks and rollover distance were considered, the simulations became almost insensitive to suspension parameters.
Technical Paper

Simulating Moving Motorcycle to Moving Car Crashes

2012-04-16
2012-01-0621
There has been little published research into simulating two-moving motorcycle-to-car collisions for the purpose of accident reconstruction. In this paper a series of two-moving crash tests were conducted to study collisions of this type. These tests used a range of speeds for the cars and the motorcycles involved, with perpendicular and oblique intersection collision impact configurations. The tests were then simulated with two popular crash simulation packages which were not designed to simulate motorcycles. The purpose of this study was to evaluate existing techniques and develop new techniques for simulating motorcycles in these software packages and then to examine the ability of each package to simulate a two-moving motorcycle-to-car crash. The results demonstrate that it is indeed possible to simulate a motorcycle in these packages and that both packages can simulate two-moving motorcycle-to-car crashes reasonably well.
Technical Paper

Empirical Testing of Vehicular Rotational Motion

2012-04-16
2012-01-0602
Vehicles often rotate during traffic collisions due to impact forces or excessive steering maneuvers. In analyzing these situations, accident reconstructionists need to apply accurate deceleration rates for vehicles that are both rotating and translating to a final resting position. Determining a proper rate of deceleration is a challenging but critical step in calculating energy or momentum-based solutions for analytical purposes. In this research, multiple empirical tests were performed using an instrumented vehicle that was subjected to induced rotational maneuvers. A Ford Crown Victoria passenger car was equipped with a modified brake system where selected wheels could be isolated. The tests were performed on a dry asphalt surface at speeds of approximately 50 mph. In each of the tests, the vehicle rotated approximately 180 degrees with the wheels on one side being completely locked.
Technical Paper

A Comparison Study between PC-Crash Simulation and Instrumented Handling Maneuvers

2011-04-12
2011-01-1121
Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data. The authors modeled 26 handling tests. PC-Crash appeared to be a reasonable tool for modeling gross vehicle response. ...This research compares vehicle dynamic simulations in PC-Crash 8.2 to data recorded during instrumented handling tests conducted by Mechanical Systems Analysis Incorporated (MSAI). ...Vehicle weight, center of gravity (c.g) position, suspension stiffness parameters, tire parameters, steering angle, and vehicle speed data provided by MSAI were used as input for the PC-Crash model. Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data.
Journal Article

Verification of ABS Models Applied in Programs for Road Accident Simulation

2010-04-12
2010-01-0070
The objective of the paper is to present the results of verification of ABS models applied in PC-Crash and HVE (Human-Vehicle-Environment) computer programs in various road conditions. The aim was reached by comparison of the road tests results obtained and calculations performed using the programs for the same initial values of the measured variables.
Technical Paper

Analysis of a Dolly Rollover with PC-Crash

2009-04-20
2009-01-0822
The current capabilities of PC-Crash for rollover modeling are discussed and suggestions are made for how PC-Crash might be improved for modeling rollovers. ...This paper evaluates the use of PC-Crash simulation software for modeling the dynamics of a dolly rollover crash test. The specific test used for this research utilized a Ford sport utility vehicle and was run in accordance with SAE J2114. ...Next, the test was modeled using PC-Crash. The simulation was optimized to yield a reasonable fit with the actual test dynamics by changing the following parameters in PC-Crash: (1) the friction coefficient associated with each vehicle-to-ground impact; (2) the coefficient of restitution for vehicle-to-ground impacts; (3) the vehicle body stiffness; and (4) the vehicle suspension and damping.
Technical Paper

Tire Models for Vehicle Dynamic Simulation and Accident Reconstruction

2009-04-20
2009-01-0102
Various vehicle dynamic simulation software programs have been developed for use in reconstructing accidents. Typically these are used to analyze and reconstruct preimpact and postimpact vehicle motion. These simulation programs range from proprietary programs to commercially available packages. While the basic theory behind these simulations is Newton's laws of motion, some component modeling techniques differ from one program to another. This is particularly true of the modeling of tire force mechanics. Since tire forces control the vehicle motion predicted by a simulation, the tire mechanics model is a critical feature in simulation use, performance and accuracy. This is particularly true for accident reconstruction applications where vehicle motions can occur over wide ranging kinematic wheel conditions. Therefore a thorough understanding of the nature of tire forces is a necessary aspect of the proper formulation and use of a vehicle dynamics program.
Book

Crash Reconstruction Research

2008-03-17
The science of crash reconstruction enables engineers to determine the most probable scenario for how and why traffic collisions occur. Ongoing research has continually enhanced crash reconstructionists' knowledge of the application of physical laws in this field. Crash Reconstruction Research: 20 Years of Progress (1988-2007) features 47 papers that have presented significant steps forward, focusing on the following areas within the field of crash reconstruction that have experienced major advances: Planar Impact Mechanics Stiffness Modeling Crash Pulse Analysis Structural Restitution Lateral Deformation and Override/Underride BEV v. Delta-V Rear and Side Impacts Pole Impacts Uncertainty Analysis Pedestrian Crashes Braking Performance
X