Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Characterizing Regenerative Coast-Down Deceleration in Tesla Model 3, S, and X

2020-04-14
2020-01-0883
Tesla Motors vehicles utilize a regenerative braking system to increase mileage per charge. The system is designed to convert the vehicles’ kinetic energy during coast-down into electrical potential energy by using rotational wheel motion to charge the batteries, resulting in moderate deceleration. During this coast-down, the system will activate the brake lights to notify following vehicles of deceleration. The goals of this study were to analyze and quantify the regenerative braking behavior of the Tesla Model 3, S, and X, as well as the timing and activation criteria for the brake lights during the coast-down state. A total of seven Tesla vehicles (two Model 3, three Model S and two Model X) were tested in both Standard and Low regenerative braking modes. All three Tesla models exhibited similar three-phase behavior: an initial ramp-up phase, a steady-state phase, and a non-linear ramp-down phase at low road speeds. Phase 1 was less than one second in length.
Technical Paper

Tackling Three Critical Issues of Transportation: Environment, Safety and Congestion Via Semi-autonomous Platooning

2014-03-24
2014-01-2007
In recent years, platooning emerged as a realistic configuration for semi-autonomous driving. In the SARTRE project, simulation and physical tests were performed to validate the platooning system not only in testing facilities but also in conventional highways. Five vehicles were adapted with autonomous driving systems to have platooning functionalities, enabling to perform platoon tests and assess the feasibility, safety and benefits. Although the tested system was in a prototype, it demonstrated sturdiness and good functionality, allowing performing conventional road tests. First of all the fuel consumption decreased up to 16% in some configurations and different gaps between the vehicles were tested in order to establish the most suitable for platooning in terms of safety and economy. Additionally, the platooning technology enables a new level of safety in highways. Around 85% of the accident causation is the human factor.
Technical Paper

Determination of Vehicle Velocities and Collision Location by Means of Monte Carlo Simulation Method

2006-04-03
2006-01-0907
In road accident analysis the problem of uncertainty of calculation results becomes essential particularly when modification of input values within the adopted ranges leads to diametric change of the answer to the question posed by the court of justice (e.g. “collision from the right-hand side of the center line” – “collision from the left-hand side of the center line”, or “the accident could have been avoided” – “the accident could not be avoided”). The aim of the paper was to present a method of collision reconstruction calculation using the principle of conservation of momentum, the principle of energy conservation, and the principle of kinetic energy and work equivalence (energy balance) (Marquard), taking into consideration Monte Carlo simulation method. The applicability of the method in determination of distribution function for vehicle collision velocities was proved and, what is more important, its practical uselessness in determination of collision location.
X