Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Yaw Testing of an Instrumented Vehicle with and without Braking

Two methods for calculating speed from curved tire marks were investigated. The commonly used critical speed formula and a computer simulation program were evaluated based on their ability to reproduce the results of full-scale yaw tests. The effects of vehicle braking and friction coefficient were studied. Twenty-two yaw tests were conducted at speeds between 70 and 120 km/h. For half of the tests, about 30% braking was applied. Using the measured sliding coefficient of friction, both the critical speed formula and the computer simulations under-predicted the actual speed of the vehicle. Using the measured peak coefficient of friction, both methods over-estimated the actual speed. There was less variance in the computer simulation results. Braking tended to increase the speeds calculated by the critical speed formula.
Technical Paper

A Comparison of Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation

The moments of inertia, in yaw, pitch, and roll, as well as the center of gravity height are necessary to successfully model the 3D dynamic behavior of vehicles before, during and after collision. A number of vehicle parameter estimation techniques have been developed and are currently in use in North America and Europe. Many parameters have been measured by NHTSA and others. The estimation techniques are compared to the available measured values, and recommendations are made for best estimating the parameters when measured values are not available. The sensitivity of 3D vehicle collision dynamics and trajectory simulation to variance in the moment of inertia is demonstrated.