# Search Results

Viewing 1 to 4 of 4
Technical Paper

### Uncertainty in Calculations Using Lambourn's Critical Speed Procedure

2013-04-08
2013-01-0779
Critical Speed Formula (CSF) belongs to the canon of tools used in reconstruction of vehicle accidents. It is used to calculate vehicle speed at the beginning of tire yaw marks and, together with the entire methodology of processing the information contained in the marks into the data, is often referred to as the Critical Speed Method (CSM). Its great practical importance as well as recurring doubts as to the reliability make it one of the best experimentally and theoretically studied methods. Although the CSF applies in fact to a point mass, it is used with reference to a vehicle, i.e., an increasingly complicated multi-body system. Accident reconstruction experts point out the particular usefulness of Lambourn's research concerning the CSM in respect to a passenger car.
Technical Paper

### Determination of Vehicle Velocities and Collision Location by Means of Monte Carlo Simulation Method

2006-04-03
2006-01-0907
In road accident analysis the problem of uncertainty of calculation results becomes essential particularly when modification of input values within the adopted ranges leads to diametric change of the answer to the question posed by the court of justice (e.g. “collision from the right-hand side of the center line” – “collision from the left-hand side of the center line”, or “the accident could have been avoided” – “the accident could not be avoided”). The aim of the paper was to present a method of collision reconstruction calculation using the principle of conservation of momentum, the principle of energy conservation, and the principle of kinetic energy and work equivalence (energy balance) (Marquard), taking into consideration Monte Carlo simulation method. The applicability of the method in determination of distribution function for vehicle collision velocities was proved and, what is more important, its practical uselessness in determination of collision location.
Technical Paper

### Determination of Critical Speed, Slip Angle and Longitudinal Wheel Slip based on Yaw Marks Left by a Wheel with Zero Tire Pressure

2016-04-05
2016-01-1480
This article presents the results of an analysis of the yaw marks left by a car with normal pressure in all tires and then normal pressure in three tires and zero in one rear tire. The analysis is a continuation of research on influence of reduced tire pressure on car lateral dynamics in a passing maneuver, discussed in the SAE paper No. 2014-01-0466. Preliminary analysis of yaw marks has shown, that a wheel with zero pressure deposits a yaw mark whose geometry differs from the yaw mark made by a wheel with normal pressure based on which we could calculate: critical speed, slip angle and longitudinal wheel slip. The aim of the presented research was to analyze the yaw marks left by car with zero pressure in one rear wheel in order to check the possibility of determining the vehicle critical speed, slip angle and longitudinal wheel slip. It was reached by performing bench and road tests during which the vehicle motion parameters were recorded using GPS Data Logging System.