Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Accuracy and Sensitivity of Yaw Speed Analysis to Available Data

Accident reconstructionists rarely have complete data with which to determine vehicle speed, and so the true value must be bracketed within a range. Previous work has shown the effect of friction uncertainty in determining speed from tire marks left by a vehicle in yaw. The goal of the current study was to assess improvements in the accuracy of vehicle speed estimated from yaw marks using progressively more scene and vehicle information. Data for this analysis came from staged S-turn maneuvers that in some cases led to rollover of sport utility vehicles. Initial speeds were first calculated using the critical curve speed (CCS) formula on the yaw marks from the first portion of the S-maneuver. Then computer simulations were performed with progressively more input data: i) the complete tire marks from the whole S-maneuver, ii) measured vehicle mass, iii) measured suspension stiffness and damping, and iv) measured steering history.
Technical Paper

The Accident Research Unit Hannover as Example for Importance and Benefit of Existing In Depth Investigations

The In-Depth Investigations of the Accident Research Unit Hannover (Germany), which have been carried out since 1973 are described in the paper. The importance of the detailed analysis consists in the method, in the statistical approach and the continuous data collection over the years. The government as well as industrial manufacturers use this data. Since 1985 a statistical procedure including a mathematical weighting procedure has been applied. About 1000 cases per year are collected. In the paper, principal aspects in the technique of data collection, definitions of variables and possibilities of data usage are described. The limitations of in-depth investigations are discussed in principle, and demands for a worldwide level are pointed out.