Refine Your Search


Search Results

Viewing 1 to 19 of 19
Technical Paper

A New Approach to Occupant Simulation Through the Coupling of PC-Crash and MADYMO

During recent years the accident simulation program PC-Crash was developed. This software simulates vehicle movement before, during and after the impact, using 3D vehicle and scene models. ...A new interface has been developed between MADYMO® and PC-Crash so that, after the reconstruction of an accident, only a few additional parameters regarding restraint system, seat and occupant must be defined. ...A new interface has been developed between MADYMO® and PC-Crash so that, after the reconstruction of an accident, only a few additional parameters regarding restraint system, seat and occupant must be defined. PC-Crash then creates all necessary input files for MADYMO® and starts the occupant simulation.
Technical Paper

Application of the Monte Carlo Methods for Stability Analysis within the Accident Reconstruction Software PC-CRASH

During recent years the accident simulation program PC-CRASH was developed, which allows simulating the vehicles movement before, during and after the impact. ...The first one serves as an alternative for the optimizer tool and is included in the current version of PC-Crash. It gives reasonable insight in the variation of certain parameters in reasonable calculation time.
Journal Article

Reconstructing Vehicle Dynamics from On-Board Event Data

These predictions were generated by directly integrating the VCH data and by using the VCH data as inputs to PC-Crash simulations. The predicted positions and headings were then compared to the actual position and heading data measured using differential GPS synchronized to the VCH data record.
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

Essential Considerations in Delta-V Determination

While Delta-V has been one of the most used indicators of accident severity for vehicle occupants, its actual determination remains a mystery to many who refer to it and use it. Delta-V is a term of art applied to a rapid change in vehicle velocity caused by impact forces during a collision. The Delta-V is associated with the high decelerations, which cause it and are applied to the occupants through restraint systems and collisions with the interior of the vehicle. This paper will serve as a primer for those new to the subject and a review for those who are familiar with the subject. Previous works by the authors will be referenced and other pertinent literature and data sources will be discussed. The analytical methods and test data used to calculate Delta-V will be presented and the relationship between Delta-V and other measures of impact severity, such as Barrier Equivalent Velocity and Energy Equivalent Speed will be discussed. The use of air bag sensor data will be included.
Technical Paper


The most important topic in the field of passive safety of buses and coaches nowadays is the future compulsory use of seat belts. The objective of the study performed by IDIADA AUTOMOTIVE TECHNOLOGY SA and CENTRO ZARAGOZA is to make an important contribution to the existing technical data about this subject. This paper is based on the in-depth analysis of recent road traffic accidents where buses were involved. The first step is the accident reconstruction. A complete injury report including description and causes of occupant injuries is the basis for the correlation of a computer simulation model. Experience in the development of coach seats equipped with seat belts enables the preparation of a comparative model. The hypothesis that the consequences of the accident could have been less severe if the occupants of the bus had worn a seat belt can be evaluated. The conclusions will help the legislators make the right decision.
Technical Paper

Comparisons of Devices for Measuring Acceleration vs. Time in Braking Tests

The coefficient of friction between a vehicle's tires and the roadway is a key parameter in any accident reconstruction. With the proliferation of vehicle dynamics software, it is often important to have more details regarding the tires interaction with the road than simply the average deceleration rate. Devices which can provide the peak friction as the braking develops, along with the average deceleration during the fully developed sliding phase, are necessary. There are now products widely available to the accident reconstruction market which provides these parameters as well as detailed acceleration vs. time curves. The following products capable of providing these results were tested: Accelerex, Vericom VC3000, and two general purpose accelerometers made by Silicon Designs and Dimension Engineering. Tests were conducted on wet and dry asphalt surfaces using a variety of passenger vehicles and transit buses which confirmed the agreement between these devices.
Technical Paper

A Pilot Study at National Highway-8 for On-Site Crash Data Collection and In-Depth Investigation in India

The importance of on-site, in-depth accident research studies has been recognized internationally especially in developed countries. In order to address problems related to road safety, it is important to understand the epidemiology and causation of crashes. For this an in-depth investigation of the crash site, vehicles involved and injury details is required. Detailed crash information helps in analysing the events leading to crash and developing safety measures and/or intervention to reduce crashes. In order to pilot such an activity in India, an in-depth accident data collection activity had been carried out on national highway connecting Delhi to Jaipur (NH-8) for a duration of over a year by a joint team of IIT-Delhi and NATRiP. A total of 1220 road traffic accidents (RTA) notifications were received by the team, of which 186 cases were attended and detailed data was collected in a pre-decided format.
Technical Paper

Empirical Testing of Vehicular Rotational Motion

Vehicles often rotate during traffic collisions due to impact forces or excessive steering maneuvers. In analyzing these situations, accident reconstructionists need to apply accurate deceleration rates for vehicles that are both rotating and translating to a final resting position. Determining a proper rate of deceleration is a challenging but critical step in calculating energy or momentum-based solutions for analytical purposes. In this research, multiple empirical tests were performed using an instrumented vehicle that was subjected to induced rotational maneuvers. A Ford Crown Victoria passenger car was equipped with a modified brake system where selected wheels could be isolated. The tests were performed on a dry asphalt surface at speeds of approximately 50 mph. In each of the tests, the vehicle rotated approximately 180 degrees with the wheels on one side being completely locked.
Technical Paper

Documenting Scientific Visualizations and Computer Animations Used in Collision Reconstruction Presentations

Scientific visualizations and computer animations are frequently presented to show the results of simulation models or the opinions of a reconstructionist. In these cases it is important to properly document the graphical images being presented. Proper documentation depends somewhat on the methodologies used to produce the images, but every scientific visualization, computer animation, and computer generated image should be documented sufficiently to allow others to duplicate the images. There are also some basic data that should accompany any computer generated images that will reveal the basis of the motion for all primary objects being depicted. This paper presents some basic definitions and outlines the data that is required to document scientific visualizations and computer animations.
Technical Paper

An Evaluation of Rectified Bitmap 2D Photogrammetry with PC-Rect

Without good-quality measurements taken at the time of an accident the analyst is faced with the need to extract measurement data from incident scene photographs. This paper discusses the history and development of the mathematical model for two-dimensional (2D) single exposure analytical photogrammetry, presents the software PC-Rect, and compares the analytical results obtained with PC-Rect to survey results. The sensitivity of the analytical results to the variation in such parameters as subject distance, camera height, digital photograph resolution, and bitmap density is discussed. The concept of using the directly rectified scanned photograph in the reconstruction task is introduced, and the utility of performing the dynamic simulation directly on the rectified photograph is discussed.
Technical Paper

Determination of Critical Speed, Slip Angle and Longitudinal Wheel Slip based on Yaw Marks Left by a Wheel with Zero Tire Pressure

This article presents the results of an analysis of the yaw marks left by a car with normal pressure in all tires and then normal pressure in three tires and zero in one rear tire. The analysis is a continuation of research on influence of reduced tire pressure on car lateral dynamics in a passing maneuver, discussed in the SAE paper No. 2014-01-0466. Preliminary analysis of yaw marks has shown, that a wheel with zero pressure deposits a yaw mark whose geometry differs from the yaw mark made by a wheel with normal pressure based on which we could calculate: critical speed, slip angle and longitudinal wheel slip. The aim of the presented research was to analyze the yaw marks left by car with zero pressure in one rear wheel in order to check the possibility of determining the vehicle critical speed, slip angle and longitudinal wheel slip. It was reached by performing bench and road tests during which the vehicle motion parameters were recorded using GPS Data Logging System.
Technical Paper

Characterizing Regenerative Coast-Down Deceleration in Tesla Model 3, S, and X

Tesla Motors vehicles utilize a regenerative braking system to increase mileage per charge. The system is designed to convert the vehicles’ kinetic energy during coast-down into electrical potential energy by using rotational wheel motion to charge the batteries, resulting in moderate deceleration. During this coast-down, the system will activate the brake lights to notify following vehicles of deceleration. The goals of this study were to analyze and quantify the regenerative braking behavior of the Tesla Model 3, S, and X, as well as the timing and activation criteria for the brake lights during the coast-down state. A total of seven Tesla vehicles (two Model 3, three Model S and two Model X) were tested in both Standard and Low regenerative braking modes. All three Tesla models exhibited similar three-phase behavior: an initial ramp-up phase, a steady-state phase, and a non-linear ramp-down phase at low road speeds. Phase 1 was less than one second in length.
Technical Paper

Driver Perception of Lateral Collision Threats

Immediate collision hazards pose obvious threats to approaching drivers and therefore provoke emergency evasive responses. When the hazard is a vehicle intruding into the lane ahead, how its movement characteristics influence an approaching driver’s response is not well understood. This study examined the relationship between intruding vehicle motion and hazard perception. Seventeen subjects viewed first-person perspective recordings of a simulated vehicle travelling down a two-lane roadway containing several intersections with stop-controlled minor roads. Stopped vehicles were located at approximately half of the minor road intersections. Throughout the study, some vehicles (termed ‘intruders’) accelerated into the subject’s lane of travel at 1 of 6 pre-determined acceleration rates. Subjects were instructed to ‘brake’ their vehicle by pressing the space bar on a keyboard as soon as they perceived that a collision was imminent.
Technical Paper

Electronics and Algorithms for Rollover Sensing

Rollover sensing and discrimination generally requires an algorithm that monitors vehicle motion and anticipates conditions that will lead to a rollover. In general, a deploy command is required in a time frame such that safety measures can be activated early enough to protect the occupants. A rollover discrimination system will typically include internal motion sensors, vehicle signals from other on-board sensors, and a microprocessor to execute the deployment algorithm. A supplemental signal path is used to arm the system, making it less susceptible to single point component failures. In this chapter we explore basic concepts of rollover sensors and system mechanization, rollover discrimination algorithms, and arming methodology. A simulation environment that models the performance of the system across part tolerance, temperature extremes and component age is used to estimate the scope of expected discrimination performance in the field.