Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Verification of ABS Models Applied in Programs for Road Accident Simulation

2010-04-12
2010-01-0070
The objective of the paper is to present the results of verification of ABS models applied in PC-Crash and HVE (Human-Vehicle-Environment) computer programs in various road conditions. The aim was reached by comparison of the road tests results obtained and calculations performed using the programs for the same initial values of the measured variables.
Technical Paper

RASSI: A Systematic Approach for On-site Crash Investigations and In-depth Accident Data Collection in India

2013-01-09
2013-26-0031
India's growing trend of serious road accidents has created an urgent need to understand the primary factors involved in these crashes and in the resulting severe injuries and fatalities. In order to improve the safety of highways and automobiles for all road users, a consortium of safety researchers and vehicle manufacturers has come together to collect first-hand, detailed and consistent crash and injury data for traffic accidents on Indian roads. After three years of pilot studies, a methodology, called Road Accident Sampling System - India (RASSI), has been developed for conducting on-site crash investigations and collecting in-depth accident data on road accidents in India. The processes developed under RASSI to investigate onsite crashes and collect quality accident data suitable for detailed analysis are described. The program includes all types of traffic accidents with injury outcomes.
Technical Paper

ASSESSMENT OF THE USE OF SEAT BELTS IN BUSES BASED ON RECENT ROAD TRAFFIC ACCIDENTS IN SPAIN

2001-06-04
2001-06-0019
The most important topic in the field of passive safety of buses and coaches nowadays is the future compulsory use of seat belts. The objective of the study performed by IDIADA AUTOMOTIVE TECHNOLOGY SA and CENTRO ZARAGOZA is to make an important contribution to the existing technical data about this subject. This paper is based on the in-depth analysis of recent road traffic accidents where buses were involved. The first step is the accident reconstruction. A complete injury report including description and causes of occupant injuries is the basis for the correlation of a computer simulation model. Experience in the development of coach seats equipped with seat belts enables the preparation of a comparative model. The hypothesis that the consequences of the accident could have been less severe if the occupants of the bus had worn a seat belt can be evaluated. The conclusions will help the legislators make the right decision.
Technical Paper

Comparisons of Devices for Measuring Acceleration vs. Time in Braking Tests

2008-04-14
2008-01-0180
The coefficient of friction between a vehicle's tires and the roadway is a key parameter in any accident reconstruction. With the proliferation of vehicle dynamics software, it is often important to have more details regarding the tires interaction with the road than simply the average deceleration rate. Devices which can provide the peak friction as the braking develops, along with the average deceleration during the fully developed sliding phase, are necessary. There are now products widely available to the accident reconstruction market which provides these parameters as well as detailed acceleration vs. time curves. The following products capable of providing these results were tested: Accelerex, Vericom VC3000, and two general purpose accelerometers made by Silicon Designs and Dimension Engineering. Tests were conducted on wet and dry asphalt surfaces using a variety of passenger vehicles and transit buses which confirmed the agreement between these devices.
Technical Paper

A Pilot Study at National Highway-8 for On-Site Crash Data Collection and In-Depth Investigation in India

2017-01-10
2017-26-0001
The importance of on-site, in-depth accident research studies has been recognized internationally especially in developed countries. In order to address problems related to road safety, it is important to understand the epidemiology and causation of crashes. For this an in-depth investigation of the crash site, vehicles involved and injury details is required. Detailed crash information helps in analysing the events leading to crash and developing safety measures and/or intervention to reduce crashes. In order to pilot such an activity in India, an in-depth accident data collection activity had been carried out on national highway connecting Delhi to Jaipur (NH-8) for a duration of over a year by a joint team of IIT-Delhi and NATRiP. A total of 1220 road traffic accidents (RTA) notifications were received by the team, of which 186 cases were attended and detailed data was collected in a pre-decided format.
Technical Paper

Uncertainty Study of Road Accident Reconstruction - Computational Methods

2005-04-11
2005-01-1195
The article demonstrates selected issues related to assessment of computational accuracy in accident analysis. The hereto presented theoretical grounds of the methods make it possible to consider uncertainties in the assessment of input data values. The methods were compared on the basis of their exemplary application in the case of braking process study of a vehicle in rectilinear motion. Also for the aforementioned case, the results obtained by means of various computational methods of vehicle motion (analytical and simulation models) were compared with the outcome of the experimental study.
Technical Paper

Tackling Three Critical Issues of Transportation: Environment, Safety and Congestion Via Semi-autonomous Platooning

2014-03-24
2014-01-2007
In recent years, platooning emerged as a realistic configuration for semi-autonomous driving. In the SARTRE project, simulation and physical tests were performed to validate the platooning system not only in testing facilities but also in conventional highways. Five vehicles were adapted with autonomous driving systems to have platooning functionalities, enabling to perform platoon tests and assess the feasibility, safety and benefits. Although the tested system was in a prototype, it demonstrated sturdiness and good functionality, allowing performing conventional road tests. First of all the fuel consumption decreased up to 16% in some configurations and different gaps between the vehicles were tested in order to establish the most suitable for platooning in terms of safety and economy. Additionally, the platooning technology enables a new level of safety in highways. Around 85% of the accident causation is the human factor.
Technical Paper

SMASH – Program for Car Accident Simulation

2000-03-06
2000-01-0848
In the paper SMASH - a computer program for road accident simulation is presented. Besides the logic of the program the models of vehicle, tire and crash itself are analyzed briefly. Data and diagrams showing the comparison between SMASH results and actual tests data are presented.
Technical Paper

Determination of Vehicle Velocities and Collision Location by Means of Monte Carlo Simulation Method

2006-04-03
2006-01-0907
In road accident analysis the problem of uncertainty of calculation results becomes essential particularly when modification of input values within the adopted ranges leads to diametric change of the answer to the question posed by the court of justice (e.g. “collision from the right-hand side of the center line” – “collision from the left-hand side of the center line”, or “the accident could have been avoided” – “the accident could not be avoided”). The aim of the paper was to present a method of collision reconstruction calculation using the principle of conservation of momentum, the principle of energy conservation, and the principle of kinetic energy and work equivalence (energy balance) (Marquard), taking into consideration Monte Carlo simulation method. The applicability of the method in determination of distribution function for vehicle collision velocities was proved and, what is more important, its practical uselessness in determination of collision location.
Technical Paper

An Investigation into C-NCAP AEB System Assessment Protocol

2017-09-23
2017-01-2009
In order to speed up the development of vehicle active safety technology in China, C-NCAP plans to add AEB and AEB VRU system as assessment items in 2018. With the purpose of studying the assessment protocol of AEB system, we have carried out 400,000 km road information collection and then we acquired the statistics of the operation conditions of dangerous situations. Combined with the traffic accident data collected by CIDAS, we found that the dangerous situations that we usually met were mainly three types, that was CCRs, CCRm and CCRb. Based on what we mentioned above, we analyzed the three kinds of working conditions and gave the corresponding evaluation method. In addition, combined with the actual situation of China, we added two tests of error function. And then we took the actual road experiment of many models of vehicles.
Technical Paper

Driver Perception of Lateral Collision Threats

2020-04-14
2020-01-1198
Immediate collision hazards pose obvious threats to approaching drivers and therefore provoke emergency evasive responses. When the hazard is a vehicle intruding into the lane ahead, how its movement characteristics influence an approaching driver’s response is not well understood. This study examined the relationship between intruding vehicle motion and hazard perception. Seventeen subjects viewed first-person perspective recordings of a simulated vehicle travelling down a two-lane roadway containing several intersections with stop-controlled minor roads. Stopped vehicles were located at approximately half of the minor road intersections. Throughout the study, some vehicles (termed ‘intruders’) accelerated into the subject’s lane of travel at 1 of 6 pre-determined acceleration rates. Subjects were instructed to ‘brake’ their vehicle by pressing the space bar on a keyboard as soon as they perceived that a collision was imminent.
X