Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

The Collision and Trajectory Models of PC-CRASH

1996-02-01
960886
This paper presents the trajectory and collision models on which PC-CRASH is based. PC-CRASH'S model for predicting the 3D kinematics of a vehicle's pre- and post-impact trajectory, which is based on a discrete- kinetic time forward simulation of vehicle dynamics rather than empirically-derived “spin-out coefficients”, is described. ...PC-CRASH is a windowso-based accident-reconstruction program which combines the simulation of pre-collision, collision, and post-collision dynamics for multiple vehicles in a graphical environment.
Technical Paper

The Trailer Simulation Model of PC-CRASH

1998-02-23
980372
The program PC-CRASH was developed for the reconstruction of vehicle accidents and considers pre-impact, collision and post-impact phases. ...The present paper describes the physical and mathematical model which was added recently to PC-CRASH in order to enable the simulation of the dynamic behavior of articulated vehicles (with both single and double axle semi-trailers and with steered trailers).
Technical Paper

How to Use PC-CRASH to Simulate Rollover Crashes

2004-03-08
2004-01-0341
This study focuses on one program, PC-CRASH. This program was developed to allow simulations of vehicle 3-dimensional movements before, during and after the impact.
Technical Paper

A New Approach to Occupant Simulation Through the Coupling of PC-Crash and MADYMO

1999-03-01
1999-01-0444
During recent years the accident simulation program PC-Crash was developed. This software simulates vehicle movement before, during and after the impact, using 3D vehicle and scene models. ...A new interface has been developed between MADYMO® and PC-Crash so that, after the reconstruction of an accident, only a few additional parameters regarding restraint system, seat and occupant must be defined. ...A new interface has been developed between MADYMO® and PC-Crash so that, after the reconstruction of an accident, only a few additional parameters regarding restraint system, seat and occupant must be defined. PC-Crash then creates all necessary input files for MADYMO® and starts the occupant simulation.
Technical Paper

A Comparison of Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation

1997-02-24
970951
The moments of inertia, in yaw, pitch, and roll, as well as the center of gravity height are necessary to successfully model the 3D dynamic behavior of vehicles before, during and after collision. A number of vehicle parameter estimation techniques have been developed and are currently in use in North America and Europe. Many parameters have been measured by NHTSA and others. The estimation techniques are compared to the available measured values, and recommendations are made for best estimating the parameters when measured values are not available. The sensitivity of 3D vehicle collision dynamics and trajectory simulation to variance in the moment of inertia is demonstrated.
Book

Collision Reconstruction Methodologies Volume 6A: Rollover Accident Reconstruction

2018-11-02
The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction.
Book

Collision Reconstruction Methodologies Volume 6C: Rollover Accident Reconstruction

2018-11-02
The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction.
Book

Collision Reconstruction Methodologies Volume 10B: Pedestrian Collisions

2018-11-02
The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction.
Book

Collision Reconstruction Methodologies Volume 6B: Rollover Accident Reconstruction

2018-11-02
The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction.
Book

Collision Reconstruction Methodologies Volume 9: Bicycle Accident Reconstruction

2018-11-02
The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction.
Book

Collision Reconstruction Methodologies Volume 4: Motorcycle Accident Reconstruction

2018-11-02
The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction.
Book

Collision Reconstruction Methodologies Volume 10A: Pedestrian Collisions

2018-11-02
The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction.
X