Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Comparison Study between PC-Crash Simulation and Instrumented Handling Maneuvers

2011-04-12
2011-01-1121
Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data. The authors modeled 26 handling tests. PC-Crash appeared to be a reasonable tool for modeling gross vehicle response. ...This research compares vehicle dynamic simulations in PC-Crash 8.2 to data recorded during instrumented handling tests conducted by Mechanical Systems Analysis Incorporated (MSAI). ...Vehicle weight, center of gravity (c.g) position, suspension stiffness parameters, tire parameters, steering angle, and vehicle speed data provided by MSAI were used as input for the PC-Crash model. Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data.
Technical Paper

Real-world car accident reconstruction methods for crash avoidance system research

2000-06-12
2000-05-0221
Development of crash avoidance systems and active safety systems must not be only based on experimental knowledge. The goal is to provide an efficient answer to still unsolved severe real-world car crashes which occur despite enhanced passive safety devices. This requires to know precisely the pre-crash conditions during about 3 to 10 seconds before impact. The paper describes the multidisciplinary systemic approach leading to the comprehensive methodology used in accident reconstruction in order to determine the best scenario, and to assess initial car speeds, paths and events in the different phases of the accident. This has already been carried out for about 400 car crashes with car occupant injuries (including 6% fatal and 10% severely injured). The necessity of collecting data on the spot of the crash scene is highlighted. Three well-trained investigators are involved.
Technical Paper

The CREST project accident data base

2001-06-04
2001-06-0042
The protection of children in cars is improving with the increasing use of better designed restraint systems. Indeed, when children are correctly restrained in appropriate child restraint systems (CRS) they are sufficiently well protected in moderate frontal impacts. However, the levels of protection afforded in severe frontal impacts and lateral crashes has needed further attention. The CREST project, funded by the European Commission, was initiated to develop the knowledge on the kinematics behavior and tolerances of children involved in car crashes. The final aim of the project is to propose enhanced test procedures for evaluating the effectiveness of child restraint systems (CRS). The method used in this project was to collect data from accident investigations and from reconstructed crashes in order to determine the physical parameters (measured on dummies) which correspond to various injury mechanisms, and is described in ESV 2001 - paper n°294.
X