Refine Your Search



Search Results

Technical Paper

Analysis of a Dolly Rollover with PC-Crash

The current capabilities of PC-Crash for rollover modeling are discussed and suggestions are made for how PC-Crash might be improved for modeling rollovers. ...This paper evaluates the use of PC-Crash simulation software for modeling the dynamics of a dolly rollover crash test. The specific test used for this research utilized a Ford sport utility vehicle and was run in accordance with SAE J2114. ...Next, the test was modeled using PC-Crash. The simulation was optimized to yield a reasonable fit with the actual test dynamics by changing the following parameters in PC-Crash: (1) the friction coefficient associated with each vehicle-to-ground impact; (2) the coefficient of restitution for vehicle-to-ground impacts; (3) the vehicle body stiffness; and (4) the vehicle suspension and damping.
Technical Paper

Vehicle Acceleration Modeling in PC-Crash

The research reported here offers a validation of this capability, demonstrating that PC-Crash can be used to realistically model the build-up of a vehicle's speed under maximal acceleration. ...In the research reported here, PC-Crash 9.0 was used to model the full-throttle acceleration capabilities of three vehicles with automatic transmissions - a 2006 Ford Crown Victoria Police Interceptor (CVPI), a 2000 Cadillac DeVille DTS, and a 2003 Ford F150. ...In each case, the full-throttle acceleration of the vehicles modeled in PC-Crash showed good agreement with the acceleration of the real vehicles in our road tests.
Technical Paper

The Collision and Trajectory Models of PC-CRASH

This paper presents the trajectory and collision models on which PC-CRASH is based. PC-CRASH'S model for predicting the 3D kinematics of a vehicle's pre- and post-impact trajectory, which is based on a discrete- kinetic time forward simulation of vehicle dynamics rather than empirically-derived “spin-out coefficients”, is described. ...PC-CRASH is a windowso-based accident-reconstruction program which combines the simulation of pre-collision, collision, and post-collision dynamics for multiple vehicles in a graphical environment.
Technical Paper

PC-Crash and HVE, an Overview of Similarities and Differences

HVE 1 and PC-Crash 2 have been the subject of numerous SAE papers. Both programs have been offered to reconstructionists for the purpose of analyzing vehicle accidents and presenting the resulting motions in 3D graphical form.
Technical Paper

How to Use PC-CRASH to Simulate Rollover Crashes

This study focuses on one program, PC-CRASH. This program was developed to allow simulations of vehicle 3-dimensional movements before, during and after the impact.
Technical Paper

A Comparison Study between PC-Crash Simulation and Instrumented Handling Maneuvers

Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data. The authors modeled 26 handling tests. PC-Crash appeared to be a reasonable tool for modeling gross vehicle response. ...This research compares vehicle dynamic simulations in PC-Crash 8.2 to data recorded during instrumented handling tests conducted by Mechanical Systems Analysis Incorporated (MSAI). ...Vehicle weight, center of gravity (c.g) position, suspension stiffness parameters, tire parameters, steering angle, and vehicle speed data provided by MSAI were used as input for the PC-Crash model. Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data.
Technical Paper

An Analytical Review and Extension of Two Decades of Research Related to PC-Crash Simulation Software

PC-Crash is a vehicular accident simulation software that is widely used by the accident reconstruction community. ...The goal of this article is to review the prior literature that has addressed the capabilities of PC-Crash and its accuracy and reliability for various applications (planar collisions, rollovers, and human motion). ...In addition, this article aims to add additional analysis of the capabilities of PC-Crash for simulating planar collisions and rollovers. Simulation analysis of five planar collisions originally reported and analyzed by Bailey [2000] are reexamined.
Technical Paper

Pedestrian Throw Distance Impact Speed Contour Plots Using PC-Crash

However, based on investigated pedestrian collisions, the location where the pedestrian has engaged with the vehicle can and does significantly influence the throw distance (and projection) and subsequent impact speed analysis. PC-Crash was used to simulate multiple pedestrian impacts at varying speeds and vehicle impact locations, creating pedestrian throw distance impact speed contour plots.
Journal Article

Verification of ABS Models Applied in Programs for Road Accident Simulation

The objective of the paper is to present the results of verification of ABS models applied in PC-Crash and HVE (Human-Vehicle-Environment) computer programs in various road conditions. The aim was reached by comparison of the road tests results obtained and calculations performed using the programs for the same initial values of the measured variables.
Journal Article

Reconstructing Vehicle Dynamics from On-Board Event Data

These predictions were generated by directly integrating the VCH data and by using the VCH data as inputs to PC-Crash simulations. The predicted positions and headings were then compared to the actual position and heading data measured using differential GPS synchronized to the VCH data record.
Technical Paper

Measuring and Modeling Suspensions of Passenger Vehicles

Numerical parameters describing suspension stiffness and damping are required for 3D simulation of vehicle trajectories, but may not be available. This paper outlines a simple, portable method of measuring these properties with a coefficient of variation of 5% on stiffness. 24 of 26 vehicles tested were significantly stiffer in roll than pitch, complicating analyses with models that don't include anti-roll. Suspension parameters did not correlate with static wheel load distribution, and damping coefficient did not correlate with natural frequency. Computer simulations of the speed required to initiate rollover in an S-curve were highly sensitive to the suspension parameters used. When pre-impact tire marks and rollover distance were considered, the simulations became almost insensitive to suspension parameters.
Technical Paper

Tire Models for Vehicle Dynamic Simulation and Accident Reconstruction

Various vehicle dynamic simulation software programs have been developed for use in reconstructing accidents. Typically these are used to analyze and reconstruct preimpact and postimpact vehicle motion. These simulation programs range from proprietary programs to commercially available packages. While the basic theory behind these simulations is Newton's laws of motion, some component modeling techniques differ from one program to another. This is particularly true of the modeling of tire force mechanics. Since tire forces control the vehicle motion predicted by a simulation, the tire mechanics model is a critical feature in simulation use, performance and accuracy. This is particularly true for accident reconstruction applications where vehicle motions can occur over wide ranging kinematic wheel conditions. Therefore a thorough understanding of the nature of tire forces is a necessary aspect of the proper formulation and use of a vehicle dynamics program.
Technical Paper

A Comparison of Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation

The moments of inertia, in yaw, pitch, and roll, as well as the center of gravity height are necessary to successfully model the 3D dynamic behavior of vehicles before, during and after collision. A number of vehicle parameter estimation techniques have been developed and are currently in use in North America and Europe. Many parameters have been measured by NHTSA and others. The estimation techniques are compared to the available measured values, and recommendations are made for best estimating the parameters when measured values are not available. The sensitivity of 3D vehicle collision dynamics and trajectory simulation to variance in the moment of inertia is demonstrated.