Refine Your Search

Topic

Search Results

Technical Paper

A New Approach to Occupant Simulation Through the Coupling of PC-Crash and MADYMO

1999-03-01
1999-01-0444
During recent years the accident simulation program PC-Crash was developed. This software simulates vehicle movement before, during and after the impact, using 3D vehicle and scene models. ...A new interface has been developed between MADYMO® and PC-Crash so that, after the reconstruction of an accident, only a few additional parameters regarding restraint system, seat and occupant must be defined. ...A new interface has been developed between MADYMO® and PC-Crash so that, after the reconstruction of an accident, only a few additional parameters regarding restraint system, seat and occupant must be defined. PC-Crash then creates all necessary input files for MADYMO® and starts the occupant simulation.
Technical Paper

Validation of the Coupled PC-CRASH - MADYMO Occupant Simulation Model

2000-03-06
2000-01-0471
During recent years the accident simulation program PCCRASH was developed, which allows to simulate the vehicles movement before, during and after the impact. ...Within SAE 1999-01-0444 a new coupling interface of PC-CRASH and the software MADYMO, developed by TNO in the Netherlands was published. During last year's publication only few validation cases, mainly related to rear end impacts could be demonstrated. ...One major emphasis was set on the influence of the crash pulse, which cannot be derived in PC-CRASH. In this way the paper demonstrates the possibilities as well as the limitations of the numerical model.
Technical Paper

Soil Trip Rollover Simulation and Occupant Kinematics in Real World Accident

2007-08-05
2007-01-3680
In this work, we focused on the trip-over type, which occurs most frequently, and performed simulations to reproduce real-world rollover accidents by combining PC-Crash and FEA. Soil trip-over simulation was carried out based on real world accidents. Based on rigid body dynamics, PC-Crash software was chosen to make an accident reconstruction analysis of some selected cases chosen from an accident database (NASS-CDS). ...Based on rigid body dynamics, PC-Crash software was chosen to make an accident reconstruction analysis of some selected cases chosen from an accident database (NASS-CDS). ...The output of this PC-crash simulation was then used as the initial input conditions (i.e., speed, deceleration, etc.) of a detailed finite element analysis.
Technical Paper

Field Effectiveness Calculation of Integrated Safety Systems

2011-04-12
2011-01-1101
The vehicle dynamics of all scenarios from the database will be simulated in PC-Crash, an accident-reconstruction software. Since the brake assist is obligatory from 2012 on, the system and its effect on each single accident scenario will be modeled.
Technical Paper

Methods of Occupant Kinematics Analysis in Automobile Crashes

2002-03-04
2002-01-0536
Understanding occupant kinematics is an important part of accident reconstruction, particularly with respect to injury causation. Injuries are generally sustained as the occupant interacts with the vehicle interior surfaces and is rapidly accelerated to the struck component's post-impact velocity. This paper describes some methods for assessing occupant kinematics in a collision, and discusses their limitations. A useful technique is presented which is based on free-body analysis and can be used to establish an occupant's path of motion relative to the vehicle, locate the point of occupant contact, and determine the occupant's velocity relative to that contact location.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Occupant Friction Coefficients on Various Combinations of Seat and Clothing

2009-06-11
2009-01-1672
This paper reports on tests conducted to determine static and dynamic coefficients of friction between occupant clothing and automotive seat upholstery materials. Multiple materials were used for both the occupants clothing and the seat upholstery to examine friction variations with various material combinations. A fixture was fabricated to hold an automotive seat stationary while a dummy was pulled forward off of the seat. The forces required to pull the dummy were recorded for the various upholstery and clothing materials and the coefficients of friction were determined.
Technical Paper

Rollover Crash Sensing and Safety Overview

2004-03-08
2004-01-0342
This paper provides an overview of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses as well as a bibliography of pertinent literature. Based on the 2001 Traffic Safety Facts published by NHTSA, rollovers account for 10.5% of the first harmful events in fatal crashes; but, 19.5% of vehicles in fatal crashes had a rollover in the impact sequence. Based on an analysis of the 1993-2001 NASS for non-ejected occupants, 10.5% of occupants are exposed to rollovers, but these occupants experience a high proportion of AIS 3-6 injury (16.1% for belted and 23.9% for unbelted occupants). The head and thorax are the most seriously injured body regions in rollovers. This paper also describes a research program aimed at defining rollover sensing requirements to activate belt pretensioners, roof-rail airbags and convertible pop-up rollbars.
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

Essential Considerations in Delta-V Determination

2001-10-01
2001-01-3165
While Delta-V has been one of the most used indicators of accident severity for vehicle occupants, its actual determination remains a mystery to many who refer to it and use it. Delta-V is a term of art applied to a rapid change in vehicle velocity caused by impact forces during a collision. The Delta-V is associated with the high decelerations, which cause it and are applied to the occupants through restraint systems and collisions with the interior of the vehicle. This paper will serve as a primer for those new to the subject and a review for those who are familiar with the subject. Previous works by the authors will be referenced and other pertinent literature and data sources will be discussed. The analytical methods and test data used to calculate Delta-V will be presented and the relationship between Delta-V and other measures of impact severity, such as Barrier Equivalent Velocity and Energy Equivalent Speed will be discussed. The use of air bag sensor data will be included.
Technical Paper

Modeling of Occupant Impacts During Rollover Collisions

2000-03-06
2000-01-0854
This paper describes a modeling method whereby the occupant impacts during rollover collisions may be predicted with sufficient accuracy to predict their injury level. By using MADYMO to reconstruct the vehicle motions during a rollover collision and the subsequent vehicle accelerations, the model may also be used to calculate occupant impact accelerations if reasonable estimates of interior surface stiffnesses are used.
Journal Article

Vehicle and Occupant Responses in a Friction Trip Rollover Test

2009-04-20
2009-01-0830
Objective: A friction rollover test was conducted as part of a rollover sensing project. This study evaluates vehicle and occupant responses in the test. Methods: A flat dolly carried a Saab 9-3 sedan laterally, passenger-side leading to a release point at 42 km/h (26 mph) onto a high-friction surface. The vehicle was equipped with roll, pitch and yaw gyros near the center of gravity. Accelerometers were placed at the vehicle center tunnel, A-pillar near the roof, B-pillar near the sill, suspension sub-frame and wheels. Five off-board and two on-board cameras recorded kinematics. Hybrid III dummies were instrumented for head and chest acceleration and upper neck force and moment. Belt loads were measured. Results: The vehicle release caused the tires and then wheel rims to skid on the high-friction surface. The trip involved roll angular velocities >300 deg/s at 0.5 s and a far-side impact on the driver’s side roof at 0.94 s. The driver was inverted in the far-side, ground impact.
Technical Paper

Modeling the Effects of Seat Belt Pretensioners on Occupant Kinematics During Rollover

2006-04-03
2006-01-0246
The results of a number of previous studies have demonstrated that seat-belted occupants can undergo significant upward and outward excursion during the airborne phase of vehicular rollover, which may place the occupant at risk for injury during subsequent ground contacts. Furthermore, testing using human volunteers, ATDs, and cadavers has shown that increasing tension in the restraint system prior to a rollover event may be of value for reducing occupant displacement. On this basis, it may be argued that pretensioning the restraint system, utilizing technology developed and installed primarily for improving injury outcome in frontal impacts, may modify restrained occupant injury potential during rollover accidents. However, the capacity of current pretensioner designs to positively impact the motion of a restrained occupant during rollover remains unclear.
Technical Paper

Reconstruction of Pediatric Occupant Kinematic Responses Using Finite Element Method in a Real-World Lateral Impact

2017-03-28
2017-01-1462
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinematic responses and injury mechanism. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Parameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, were analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
Technical Paper

Empirical Testing of Vehicular Rotational Motion

2012-04-16
2012-01-0602
Vehicles often rotate during traffic collisions due to impact forces or excessive steering maneuvers. In analyzing these situations, accident reconstructionists need to apply accurate deceleration rates for vehicles that are both rotating and translating to a final resting position. Determining a proper rate of deceleration is a challenging but critical step in calculating energy or momentum-based solutions for analytical purposes. In this research, multiple empirical tests were performed using an instrumented vehicle that was subjected to induced rotational maneuvers. A Ford Crown Victoria passenger car was equipped with a modified brake system where selected wheels could be isolated. The tests were performed on a dry asphalt surface at speeds of approximately 50 mph. In each of the tests, the vehicle rotated approximately 180 degrees with the wheels on one side being completely locked.
Technical Paper

Effectiveness of Side-Airbags for Front Struckside Belted Car Occupants in Lateral Impact Conditions - An In-Depth-Analysis by GIDAS1

2007-04-16
2007-01-1157
Accident documentations on GIDAS (German In-Depth-Accident Study) from 1999 to 2005 are used for this study dealing with the effectiveness of the side airbag protection for car occupants. An analysis of real world accidents was carried out by ARU-MUH (Accident Research Unit - Medical University Hannover). The data were collected based on the spot documentation in time after an accident event. Based on the accident sampling process, the results of this study are representative for the German traffic accident situation. In order to determine the influence and the effectiveness of airbags, only those accident configurations with comparable conditions on impact direction are used for the study, therefore only cases with impact to the compartment, a delta-v-range 5 to 50 km/h and for struckside seated belted occupants were selected.
Technical Paper

Driver Perception of Lateral Collision Threats

2020-04-14
2020-01-1198
Immediate collision hazards pose obvious threats to approaching drivers and therefore provoke emergency evasive responses. When the hazard is a vehicle intruding into the lane ahead, how its movement characteristics influence an approaching driver’s response is not well understood. This study examined the relationship between intruding vehicle motion and hazard perception. Seventeen subjects viewed first-person perspective recordings of a simulated vehicle travelling down a two-lane roadway containing several intersections with stop-controlled minor roads. Stopped vehicles were located at approximately half of the minor road intersections. Throughout the study, some vehicles (termed ‘intruders’) accelerated into the subject’s lane of travel at 1 of 6 pre-determined acceleration rates. Subjects were instructed to ‘brake’ their vehicle by pressing the space bar on a keyboard as soon as they perceived that a collision was imminent.
X