Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Collision and Trajectory Models of PC-CRASH

1996-02-01
960886
This paper presents the trajectory and collision models on which PC-CRASH is based. PC-CRASH'S model for predicting the 3D kinematics of a vehicle's pre- and post-impact trajectory, which is based on a discrete- kinetic time forward simulation of vehicle dynamics rather than empirically-derived “spin-out coefficients”, is described. ...PC-CRASH is a windowso-based accident-reconstruction program which combines the simulation of pre-collision, collision, and post-collision dynamics for multiple vehicles in a graphical environment.
Technical Paper

A Comparison Study between PC-Crash Simulation and Instrumented Handling Maneuvers

2011-04-12
2011-01-1121
Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data. The authors modeled 26 handling tests. PC-Crash appeared to be a reasonable tool for modeling gross vehicle response. ...This research compares vehicle dynamic simulations in PC-Crash 8.2 to data recorded during instrumented handling tests conducted by Mechanical Systems Analysis Incorporated (MSAI). ...Vehicle weight, center of gravity (c.g) position, suspension stiffness parameters, tire parameters, steering angle, and vehicle speed data provided by MSAI were used as input for the PC-Crash model. Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data.
Technical Paper

Post-Impact Dynamics for Vehicles with a High Yaw Velocity

2016-04-05
2016-01-1470
Calculating the speed of a yawing and braked vehicle often requires an estimate of the vehicle deceleration. During a steering induced yaw, the rotational velocity of the vehicle will typically be small enough that it will not make up a significant portion of the vehicle’s energy. However, when a yaw is impact induced and the resulting yaw velocity is high, the rotational component of the vehicle’s kinetic energy can be significant relative to the translational component. In such cases, the rotational velocity can have a meaningful effect on the deceleration, since there is additional energy that needs dissipated and since the vehicle tires can travel a substantially different distance than the vehicle center of gravity. In addition to the effects of rotational energy on the deceleration, high yaw velocities can also cause steering angles to develop at the front tires. This too can affect the deceleration since it will influence the slip angles at the front tires.
Technical Paper

Yaw Testing of an Instrumented Vehicle with and without Braking

2004-03-08
2004-01-1187
Two methods for calculating speed from curved tire marks were investigated. The commonly used critical speed formula and a computer simulation program were evaluated based on their ability to reproduce the results of full-scale yaw tests. The effects of vehicle braking and friction coefficient were studied. Twenty-two yaw tests were conducted at speeds between 70 and 120 km/h. For half of the tests, about 30% braking was applied. Using the measured sliding coefficient of friction, both the critical speed formula and the computer simulations under-predicted the actual speed of the vehicle. Using the measured peak coefficient of friction, both methods over-estimated the actual speed. There was less variance in the computer simulation results. Braking tended to increase the speeds calculated by the critical speed formula.
Technical Paper

A Comparison of Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation

1997-02-24
970951
The moments of inertia, in yaw, pitch, and roll, as well as the center of gravity height are necessary to successfully model the 3D dynamic behavior of vehicles before, during and after collision. A number of vehicle parameter estimation techniques have been developed and are currently in use in North America and Europe. Many parameters have been measured by NHTSA and others. The estimation techniques are compared to the available measured values, and recommendations are made for best estimating the parameters when measured values are not available. The sensitivity of 3D vehicle collision dynamics and trajectory simulation to variance in the moment of inertia is demonstrated.
Technical Paper

Accuracy and Sensitivity of Yaw Speed Analysis to Available Data

2019-04-02
2019-01-0417
Accident reconstructionists rarely have complete data with which to determine vehicle speed, and so the true value must be bracketed within a range. Previous work has shown the effect of friction uncertainty in determining speed from tire marks left by a vehicle in yaw. The goal of the current study was to assess improvements in the accuracy of vehicle speed estimated from yaw marks using progressively more scene and vehicle information. Data for this analysis came from staged S-turn maneuvers that in some cases led to rollover of sport utility vehicles. Initial speeds were first calculated using the critical curve speed (CCS) formula on the yaw marks from the first portion of the S-maneuver. Then computer simulations were performed with progressively more input data: i) the complete tire marks from the whole S-maneuver, ii) measured vehicle mass, iii) measured suspension stiffness and damping, and iv) measured steering history.
Technical Paper

Uncertainty in Calculations Using Lambourn's Critical Speed Procedure

2013-04-08
2013-01-0779
Critical Speed Formula (CSF) belongs to the canon of tools used in reconstruction of vehicle accidents. It is used to calculate vehicle speed at the beginning of tire yaw marks and, together with the entire methodology of processing the information contained in the marks into the data, is often referred to as the Critical Speed Method (CSM). Its great practical importance as well as recurring doubts as to the reliability make it one of the best experimentally and theoretically studied methods. Although the CSF applies in fact to a point mass, it is used with reference to a vehicle, i.e., an increasingly complicated multi-body system. Accident reconstruction experts point out the particular usefulness of Lambourn's research concerning the CSM in respect to a passenger car.
Technical Paper

Computer Simulation of Steer-Induced Rollover Events Via SIMON

2011-04-12
2011-01-1122
This study examines through computer simulation the reconstruction of on-road vehicle rollover accidents induced by a driver steering maneuver. The three-dimensional vehicle dynamics software package SIMON is used to model a set of four test vehicles as six degree-of-freedom sprung masses with up to five degrees-of-freedom for each unsprung mass. The performance of the simulator's physics model, in the context of accident reconstruction, is evaluated through correlation with full-scale vehicle rollover tests. Of specific interest to this study was simulation of the trip phase of the vehicle's motion. The correlation parameters include vehicle trajectory, speed, heading angle, yaw rate, roll angle, roll rate and lateral acceleration. SIMON's capacity to accurately model the physics of a test vehicle's suspension and tire kinetics in the pre-trip and trip phases of motion is evaluated by modeling a set of four instrumented full-scale tests of steering-induced rollovers.
Technical Paper

Determination of Critical Speed, Slip Angle and Longitudinal Wheel Slip based on Yaw Marks Left by a Wheel with Zero Tire Pressure

2016-04-05
2016-01-1480
This article presents the results of an analysis of the yaw marks left by a car with normal pressure in all tires and then normal pressure in three tires and zero in one rear tire. The analysis is a continuation of research on influence of reduced tire pressure on car lateral dynamics in a passing maneuver, discussed in the SAE paper No. 2014-01-0466. Preliminary analysis of yaw marks has shown, that a wheel with zero pressure deposits a yaw mark whose geometry differs from the yaw mark made by a wheel with normal pressure based on which we could calculate: critical speed, slip angle and longitudinal wheel slip. The aim of the presented research was to analyze the yaw marks left by car with zero pressure in one rear wheel in order to check the possibility of determining the vehicle critical speed, slip angle and longitudinal wheel slip. It was reached by performing bench and road tests during which the vehicle motion parameters were recorded using GPS Data Logging System.
Technical Paper

A Critique of Critical Speed Yaw Mark Research

2012-04-16
2012-01-0600
Critical speed yaw marks are commonly used in collision reconstruction to estimate vehicle speed. Research and laboratory testing have demonstrated that critical speed calculations can be used to accurately estimate vehicle speed. Thus, the principles supporting critical speed yaw analysis are fundamentally and theoretically valid and are not being challenged in this study. However, there are observed and documented limitations with respect to the appropriate application and execution of critical speed yaw analysis. This paper reviews the published research to-date and identifies limitations of critical speed yaw analysis. Examples of collision scenes are provided which quantify the inaccuracies associated with the misuse of critical speed yaw calculations. Areas for further research are identified and detailed.
X