Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Acceleration Modeling in PC-Crash

2014-04-01
2014-01-0464
The research reported here offers a validation of this capability, demonstrating that PC-Crash can be used to realistically model the build-up of a vehicle's speed under maximal acceleration. ...In the research reported here, PC-Crash 9.0 was used to model the full-throttle acceleration capabilities of three vehicles with automatic transmissions - a 2006 Ford Crown Victoria Police Interceptor (CVPI), a 2000 Cadillac DeVille DTS, and a 2003 Ford F150. ...In each case, the full-throttle acceleration of the vehicles modeled in PC-Crash showed good agreement with the acceleration of the real vehicles in our road tests.
Technical Paper

The Collision and Trajectory Models of PC-CRASH

1996-02-01
960886
This paper presents the trajectory and collision models on which PC-CRASH is based. PC-CRASH'S model for predicting the 3D kinematics of a vehicle's pre- and post-impact trajectory, which is based on a discrete- kinetic time forward simulation of vehicle dynamics rather than empirically-derived “spin-out coefficients”, is described. ...PC-CRASH is a windowso-based accident-reconstruction program which combines the simulation of pre-collision, collision, and post-collision dynamics for multiple vehicles in a graphical environment.
Technical Paper

A Comparison Study between PC-Crash Simulation and Instrumented Handling Maneuvers

2011-04-12
2011-01-1121
Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data. The authors modeled 26 handling tests. PC-Crash appeared to be a reasonable tool for modeling gross vehicle response. ...This research compares vehicle dynamic simulations in PC-Crash 8.2 to data recorded during instrumented handling tests conducted by Mechanical Systems Analysis Incorporated (MSAI). ...Vehicle weight, center of gravity (c.g) position, suspension stiffness parameters, tire parameters, steering angle, and vehicle speed data provided by MSAI were used as input for the PC-Crash model. Lateral acceleration, roll angle, roll rate, and yaw rate vehicle response from PC-Crash were compared to the MSAI sensor data.
Journal Article

Reconstructing Vehicle Dynamics from On-Board Event Data

2019-04-02
2019-01-0632
These predictions were generated by directly integrating the VCH data and by using the VCH data as inputs to PC-Crash simulations. The predicted positions and headings were then compared to the actual position and heading data measured using differential GPS synchronized to the VCH data record.
Technical Paper

The Measured Rolling Resistance of Vehicles for Accident Reconstruction

1998-02-23
980368
Knowledge about vehicle rolling resistance is required to calculate speed loss of accident vehicles during portions of their pre-impact and post-impact trajectory when they are not braking or sliding directly sideways. The accuracy of assumed rolling resistance values is most important in accidents with long post-impact roll out distances. Very little hard data are currently available1 and the accident reconstructionist must usually make estimates of drivetrain losses and normal and damaged tire rolling resistance to determine overall vehicle rolling resistance. In the first part of this study, the rolling resistances of various vehicles with different drive configurations are determined, based on accurate measurements made with a 5th wheel. In the second part, sensitivity analyses are done with PC-Crash2, a computer simulation program, to determine what effect the error in assumed rolling resistance has on speed calculations for various types of post-impact trajectories.
Technical Paper

Measuring and Modeling Suspensions of Passenger Vehicles

2013-04-08
2013-01-0774
Numerical parameters describing suspension stiffness and damping are required for 3D simulation of vehicle trajectories, but may not be available. This paper outlines a simple, portable method of measuring these properties with a coefficient of variation of 5% on stiffness. 24 of 26 vehicles tested were significantly stiffer in roll than pitch, complicating analyses with models that don't include anti-roll. Suspension parameters did not correlate with static wheel load distribution, and damping coefficient did not correlate with natural frequency. Computer simulations of the speed required to initiate rollover in an S-curve were highly sensitive to the suspension parameters used. When pre-impact tire marks and rollover distance were considered, the simulations became almost insensitive to suspension parameters.
Technical Paper

ERRATUM

2014-04-01
2014-01-0464.01
Standard

Rollover Testing Methods

2017-07-28
CURRENT
J2926_201707
The scope of this document is to provide an overview of the techniques found in the published literature for rollover testing and rollover crashworthiness evaluation at the vehicle and component levels. It is not a comprehensive literature review, but rather illustrates the techniques that are in use or have been used to evaluate rollover crashworthiness-related issues.
Technical Paper

Yaw Testing of an Instrumented Vehicle with and without Braking

2004-03-08
2004-01-1187
Two methods for calculating speed from curved tire marks were investigated. The commonly used critical speed formula and a computer simulation program were evaluated based on their ability to reproduce the results of full-scale yaw tests. The effects of vehicle braking and friction coefficient were studied. Twenty-two yaw tests were conducted at speeds between 70 and 120 km/h. For half of the tests, about 30% braking was applied. Using the measured sliding coefficient of friction, both the critical speed formula and the computer simulations under-predicted the actual speed of the vehicle. Using the measured peak coefficient of friction, both methods over-estimated the actual speed. There was less variance in the computer simulation results. Braking tended to increase the speeds calculated by the critical speed formula.
Technical Paper

Modeling of Occupant Impacts During Rollover Collisions

2000-03-06
2000-01-0854
This paper describes a modeling method whereby the occupant impacts during rollover collisions may be predicted with sufficient accuracy to predict their injury level. By using MADYMO to reconstruct the vehicle motions during a rollover collision and the subsequent vehicle accelerations, the model may also be used to calculate occupant impact accelerations if reasonable estimates of interior surface stiffnesses are used.
Technical Paper

ASSESSMENT OF THE USE OF SEAT BELTS IN BUSES BASED ON RECENT ROAD TRAFFIC ACCIDENTS IN SPAIN

2001-06-04
2001-06-0019
The most important topic in the field of passive safety of buses and coaches nowadays is the future compulsory use of seat belts. The objective of the study performed by IDIADA AUTOMOTIVE TECHNOLOGY SA and CENTRO ZARAGOZA is to make an important contribution to the existing technical data about this subject. This paper is based on the in-depth analysis of recent road traffic accidents where buses were involved. The first step is the accident reconstruction. A complete injury report including description and causes of occupant injuries is the basis for the correlation of a computer simulation model. Experience in the development of coach seats equipped with seat belts enables the preparation of a comparative model. The hypothesis that the consequences of the accident could have been less severe if the occupants of the bus had worn a seat belt can be evaluated. The conclusions will help the legislators make the right decision.
Technical Paper

Comparisons of Devices for Measuring Acceleration vs. Time in Braking Tests

2008-04-14
2008-01-0180
The coefficient of friction between a vehicle's tires and the roadway is a key parameter in any accident reconstruction. With the proliferation of vehicle dynamics software, it is often important to have more details regarding the tires interaction with the road than simply the average deceleration rate. Devices which can provide the peak friction as the braking develops, along with the average deceleration during the fully developed sliding phase, are necessary. There are now products widely available to the accident reconstruction market which provides these parameters as well as detailed acceleration vs. time curves. The following products capable of providing these results were tested: Accelerex, Vericom VC3000, and two general purpose accelerometers made by Silicon Designs and Dimension Engineering. Tests were conducted on wet and dry asphalt surfaces using a variety of passenger vehicles and transit buses which confirmed the agreement between these devices.
Technical Paper

Accuracy and Sensitivity of Yaw Speed Analysis to Available Data

2019-04-02
2019-01-0417
Accident reconstructionists rarely have complete data with which to determine vehicle speed, and so the true value must be bracketed within a range. Previous work has shown the effect of friction uncertainty in determining speed from tire marks left by a vehicle in yaw. The goal of the current study was to assess improvements in the accuracy of vehicle speed estimated from yaw marks using progressively more scene and vehicle information. Data for this analysis came from staged S-turn maneuvers that in some cases led to rollover of sport utility vehicles. Initial speeds were first calculated using the critical curve speed (CCS) formula on the yaw marks from the first portion of the S-maneuver. Then computer simulations were performed with progressively more input data: i) the complete tire marks from the whole S-maneuver, ii) measured vehicle mass, iii) measured suspension stiffness and damping, and iv) measured steering history.
Technical Paper

A Pilot Study at National Highway-8 for On-Site Crash Data Collection and In-Depth Investigation in India

2017-01-10
2017-26-0001
The importance of on-site, in-depth accident research studies has been recognized internationally especially in developed countries. In order to address problems related to road safety, it is important to understand the epidemiology and causation of crashes. For this an in-depth investigation of the crash site, vehicles involved and injury details is required. Detailed crash information helps in analysing the events leading to crash and developing safety measures and/or intervention to reduce crashes. In order to pilot such an activity in India, an in-depth accident data collection activity had been carried out on national highway connecting Delhi to Jaipur (NH-8) for a duration of over a year by a joint team of IIT-Delhi and NATRiP. A total of 1220 road traffic accidents (RTA) notifications were received by the team, of which 186 cases were attended and detailed data was collected in a pre-decided format.
Technical Paper

Empirical Testing of Vehicular Rotational Motion

2012-04-16
2012-01-0602
Vehicles often rotate during traffic collisions due to impact forces or excessive steering maneuvers. In analyzing these situations, accident reconstructionists need to apply accurate deceleration rates for vehicles that are both rotating and translating to a final resting position. Determining a proper rate of deceleration is a challenging but critical step in calculating energy or momentum-based solutions for analytical purposes. In this research, multiple empirical tests were performed using an instrumented vehicle that was subjected to induced rotational maneuvers. A Ford Crown Victoria passenger car was equipped with a modified brake system where selected wheels could be isolated. The tests were performed on a dry asphalt surface at speeds of approximately 50 mph. In each of the tests, the vehicle rotated approximately 180 degrees with the wheels on one side being completely locked.
Technical Paper

Analysis of Finite Element Models for Head Injury Investigation: Reconstruction of Four Real-World Impacts

2005-11-09
2005-22-0001
Previous studies have shown that both excessive linear and rotational accelerations are the cause of head injuries. Although the head injury criterion has been beneficial as an indicator of head injury risk, it only considers linear acceleration, so there is a need to consider both types of motion in future safety standards. Advanced models of the head/brain complex have recently been developed to gain a better understanding of head injury biomechanics. While these models have been verified against laboratory experimental data, there is a lack of suitable real-world data available for validation. Hence, using two computer models of the head/brain, the objective of the current study was to reconstruct four real-world crashes with known head injury outcomes in a full-vehicle crash laboratory, simulate head/brain responses using kinematics obtained during these reconstructions, and to compare the results predicted by the models against the actual injuries sustained by the occupant.
Technical Paper

Computer Simulation of Steer-Induced Rollover Events Via SIMON

2011-04-12
2011-01-1122
This study examines through computer simulation the reconstruction of on-road vehicle rollover accidents induced by a driver steering maneuver. The three-dimensional vehicle dynamics software package SIMON is used to model a set of four test vehicles as six degree-of-freedom sprung masses with up to five degrees-of-freedom for each unsprung mass. The performance of the simulator's physics model, in the context of accident reconstruction, is evaluated through correlation with full-scale vehicle rollover tests. Of specific interest to this study was simulation of the trip phase of the vehicle's motion. The correlation parameters include vehicle trajectory, speed, heading angle, yaw rate, roll angle, roll rate and lateral acceleration. SIMON's capacity to accurately model the physics of a test vehicle's suspension and tire kinetics in the pre-trip and trip phases of motion is evaluated by modeling a set of four instrumented full-scale tests of steering-induced rollovers.
X