Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Application of the Monte Carlo Methods for Stability Analysis within the Accident Reconstruction Software PC-CRASH

During recent years the accident simulation program PC-CRASH was developed, which allows simulating the vehicles movement before, during and after the impact. ...The first one serves as an alternative for the optimizer tool and is included in the current version of PC-Crash. It gives reasonable insight in the variation of certain parameters in reasonable calculation time.
Technical Paper

Simulation and Testing of a Suite of Field Relevant Rollovers

Automotive rollover is a complex mechanical phenomenon. In order to understand the mechanism of rollover and develop any potential countermeasures for occupant protection, efficient and repeatable laboratory tests are necessary. However, these tests are not well understood and are still an active area of research interest. It is not always easy or intuitive to estimate the necessary initial and boundary conditions for such tests to assure repeatability. This task can be even more challenging when rollover is a second or third event (e.g. frontal impact followed by a rollover). In addition, often vehicle and occupant kinematics need to be estimated a-priori, first for the safe operation of the crew and equipment safety, and second for capturing and recording the event. It is important to achieve the required vehicle kinematics in an efficient manner and thus reduce repetitive tests. Mathematical modeling of the phenomenon can greatly assist in understanding such kinematics.
Journal Article

Nonlinear Optimization in Vehicular Crash Reconstruction

This paper presents a reconstruction technique in which nonlinear optimization is used in combination with an impact model to quickly and efficiently find a solution to a given set of parameters and conditions to reconstruct a collision. These parameters and conditions correspond to known or prescribed collision information (generally from the physical evidence) and can be incorporated into the optimized collision reconstruction technique in a variety of ways including as a prescribed value, through the use of a constraint, as part of a quality function, or possibly as a combination of these means. This reconstruction technique provides a proper, effective, and efficient means to incorporate data collected by Event Data Recorders (EDR) into a crash reconstruction. The technique is presented in this paper using the Planar Impact Mechanics (PIM) collision model in combination with the Solver utility in Microsoft Excel.
Technical Paper

Design and Evaluation of an Affordable Seatbelt Retrofit for Motor Coach Occupant Safety

Prevention of passenger ejection from motor coach seats in the case of rollover and frontal crashes is critical for minimizing fatalities and injuries. This paper proposes a novel concept of affordably retrofitting 3-point seatbelts to protect passengers during these significant crash scenarios. Currently, the available options involve replacement of either the entire fleet, which takes time to avoid extremely high costs, or all seats with new seats that have seatbelts which is still expensive. Alternatively, this paper presents the development of an innovative product that can be installed in seat belt-ready bus structures at a fraction of the cost. The efficacy of the design is studied using finite element analysis (FEA) to meet Federal Motor Vehicle Safety Standards (FMVSS) 210 standards for conditions involved in frontal and side impacts.
Technical Paper

An Investigation into C-NCAP AEB System Assessment Protocol

In order to speed up the development of vehicle active safety technology in China, C-NCAP plans to add AEB and AEB VRU system as assessment items in 2018. With the purpose of studying the assessment protocol of AEB system, we have carried out 400,000 km road information collection and then we acquired the statistics of the operation conditions of dangerous situations. Combined with the traffic accident data collected by CIDAS, we found that the dangerous situations that we usually met were mainly three types, that was CCRs, CCRm and CCRb. Based on what we mentioned above, we analyzed the three kinds of working conditions and gave the corresponding evaluation method. In addition, combined with the actual situation of China, we added two tests of error function. And then we took the actual road experiment of many models of vehicles.
Technical Paper

The Effects of Measurement Uncertainty on the Reconstruction of Various Vehicular Collisions

This paper continues a previous study of the effects of uncertainty of measurement upon accident reconstruction. The task is to identify, given the many inevitable errors of observation, the few of greatest import, so that these errors may be reduced, and to document the accuracy of the associated reconstruction. Until recently, it was not for lack of method that such studies could not be properly performed, but for lack of good data on uncertainty of measurement. The essential data was provided in 2002 in a report by Bartlett and others of juried studies performed by volunteer field investigators, summarized and supplemented in 2003 by Bartlett and Fonda in the form of a single table of all likely errors of measurement (furnished again here). In that paper, Finite Difference Analysis (FDA) was reviewed and with the aid of the new data was applied to automotive accident reconstruction.