Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Miniature High-Performance Infrared Spectrometer for the Monitoring of Spacecraft Vital Life-Support Systems

2003-07-07
2003-01-2407
Manned space systems have many requirements for the monitoring of vital life support systems such as the cabin air quality and the quality of the recycled water supply. Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the IR spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing.
Technical Paper

Advanced Miniature IR Spectral Processor for the Infrared Spectral Monitoring of Spacecraft Vital Life-Support Systems and Remote Astronaut Health Diagnostics

2006-07-17
2006-01-2178
Infrared (IR) spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide direct information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the IR spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of different chemical and biochemical species with high chemical specificity. Currently, various VIS/NIR grating spectrometers are employed to cover the spectral range between 0.3 and about 2.2 (μm. Bulk-optic Fourier Transform (FT)-IR spectrometers employing variations of the Michelson interferometer are generally used to provide spectral measurements above 2.5 (μm. The FT-IR systems tend to be mechanically complex, bulky (>15 kg), and require considerable processing, maintenance and recalibration. For space-based systems, the important drivers are reliability, power consumption, mass and simplicity of operation.
Technical Paper

Advanced Integrated-Optic and MNT Technologies for the Infrared Spectral Monitoring of Spacecraft Vital Life-Support Systems and Remote Astronaut Health Diagnostics

2005-07-11
2005-01-2878
Manned space systems have many requirements for the monitoring of vital life support systems including quality of cabin air and the recycled water supply, as well as direct monitoring of vital indicators of astronaut health. Infrared (IR) spectroscopy is an attractive monitoring technique because it requires minimal consumables while providing relatively high chemical specificity for the detection of a wide variety of biochemicals using the characteristic vibrational modes of chemical bonds. For space-based systems, the important drivers are reliability, power consumption, mass and simplicity of operation. MPB has advanced its IOSPEC™ technology for miniature integrated IR spectrometers to provide performance comparable to large bench-top IR systems but in a compact and ruggedized footprint weighing under 2.5 kg.
Technical Paper

Passive Dynamically-Variable Thin-film Smart Radiator Device

2003-07-07
2003-01-2472
This paper describes a new approach to spacecraft thermal control based on a passive thin-film smart radiator device (SRD) that employs a variable heat-transfer/emitter structure. ...As the spacecraft temperature increases above the selected transition temperature, the thermal emissivity of the SRD to dark space increases by a factor of 2.5 to 3.
Technical Paper

Thin-film Smart Radiator Tiles With Dynamically Tuneable Thermal Emittance

2005-07-11
2005-01-2906
This facilitates thermal emissivities below 0.3 to dark space at lower temperatures that enhance the self-heating of the spacecraft to reduce heater requirements. As the spacecraft temperature increases above the preselected temperature setpoint, the thermal emissivity of the SRT to dark space gradually increases. ...This paper describes recent advances in MPB's approach to spacecraft thermal control based on a passive thin-film smart radiator tile (SRT) that employs a variable heat-transfer/emitter structure.
Technical Paper

Optimization of Tuneable Emittance Smart Coatings for Thermal Control in Small Satellites

2007-07-09
2007-01-3126
MPB's passive thin-film SRD can be applied to Al thermal radiators as a direct replacement for the existing OSR (optical second-reflector) radiator tiles with a net added mass under 100 gm/m2 but with the added benefits of dynamic variation in the thermal radiation to space to significantly improve the thermal stability of the spacecraft for varying operating conditions at a significant mass and power savings relative to traditional techniques.
Technical Paper

Multi-function Tuneable Emittance Smart Coatings for Thermal Control in Harsh Space Environment

2006-07-17
2006-01-2263
MPB's passive thin-film SRD can be applied to Al thermal radiators as a direct replacement for the existing OSR (optical second-reflector) radiator tiles with a net added mass under 100 gm/m2 but with the added benefits of dynamic variation in the thermal radiation to space to significantly improve the thermal stability of the spacecraft for varying operating conditions at a significant mass and power savings relative to traditional techniques.
X