Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Characterization of Brake Creep Groan Vibrations

2020-09-30
2020-01-1505
Creep groan is an annoying brake noise at very low speeds of the vehicle. In general, stick-slip between brake disk and brake pads is believed to be the most dominating vibration mechanism of creep groan phenomena. This paper will show by sophisticated measurement techniques that stick-slip and speed-dependent friction is an important trigger. However, the overall vibration is much more complex than stick-slip reproduced by simple conveying belt minimal models. It turns out that in typical brake systems of passenger cars, creep groan appears from 15 to 25 Hz as well as 60 to 100 Hz. The mechanism from 15 to 25 Hz is highly impulsive and “hard”. Transitions between stick and slip phases trigger coupled nonlinear vibrations of the complete brake and suspension system. From 60 to 100 Hz, the vibrations show a more harmonic-like and “soft” signature, caused mainly by a speed-dependent friction behavior.
Technical Paper

Characterization of Different Injection Technologies for High Performance Two-Stroke Engines

2016-11-08
2016-32-0001
High performance engines are used in many different powersports applications. In several of these applications 2-stroke engines play an important role. The direct injection technology is a key technology for 2-stroke engines to fulfill both the customers’ request for high power and the environmental requirements concerning emissions and efficiency. As the load spectrum differs from one application to the other, it was interesting to find out if different injection technologies can answer the needs for different applications more efficiently regarding performance but also economic targets. Therefore, the results of the BRP Rotax 600 cm3 E-TEC (direct injection system) engine are compared to the same base engine but adopted with the LPDI (low pressure direct injection) technology developed by IVT at Graz University of Technology. The systems were compared on the engine testbench over 17 rpm / load points representing different product usage profiles.
Technical Paper

Characterizing a Real-Driving Brake Emissions Sampling System on a Laboratory Test Bed

2023-11-05
2023-01-1875
Brake wear emissions gained significant relevance with the upcoming Euro7 type approval within the European Union for brake emission measurement on the test bed. While the controlled brake test bed approach provides consistent results, real-driving emission (RDE) measurements are needed to better understand actual emission behavior due to varying vehicle and environmental conditions. The EU has already announced its interest in RDE testing. Here we present the results of an RDE brake wear sampling system with minimal thermal impact, where particles are only sampled from one side of the brake disc, characterized on a laboratory sampling system. The investigations aim to validate symmetric particle release and to confirm that doubling the measured RDE results effectively represents the reference emissions on the test bed.
Technical Paper

Charging and Powersport for Motorcycles: A Contradiction?

2011-11-08
2011-32-0585
In this study, investigations on charging strategies for motorcycle applications have been performed on the basis of modern charging concepts. These investigations had been driven by the goal of CO₂ reduction and optimization of packaging size, while maintaining the extraordinary dynamic response behavior of modern motorcycle engines. Based on experimental investigations of the boundary conditions and restrictions of motorcycle applications in contrast to automotive applications, intense experimental test bench and on the road investigations of the stationary and transient behavior of charging strategies have been performed. These investigations covered automotive state-of-the-art charged engines as well as charged motorcycle applications. With these results, simulations of the air path for stationary and transient operation were used in order to evaluate the potential of several charging strategies for motorcycle applications.
Technical Paper

Co-Simulation of a BEV Thermal Management System with Focus on Advanced Simulation Methodologies

2023-10-31
2023-01-1609
In battery electric vehicles (BEV), thermal management is a key technique to improve efficiency and lifetime. Currently, manufacturers use different cooling concepts with numerous architectures. This work describes the development of a co-simulation framework to optimize BEV thermal management on system level, using advanced simulation methodologies also on component level, merging simulation and testing. Due to interactions between multiple conditioning circuits, thermal management optimization requires an overall vehicle approach. Thus, a full vehicle co-simulation of a BEV is developed, combining 1D thermal management software KULI and MATLAB/Simulink. Within co-simulation, the precise modeling of vehicle’s subsystems is important to predict thermal behavior and to calculate dynamic heating and cooling demands as well as exchanged energy flows with the thermal management system.
Technical Paper

Combustion Analysis with Residual Gas as a Design Parameter for Two-Stroke Engines

2018-10-30
2018-32-0045
In a variety of applications, two-stroke engines assert their usage as a propulsion unit, for examples in off-road vehicles, scooters, hand-held power tools and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. Furthermore, two-stroke engines convince with high durability and low maintenance demand. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of two-stroke engines. The reduction of emissions and fuel consumption with a constant power level is focused on. Developments deal with the optimization of the combustion process itself or the enhancement of the exhaust gas aftertreatment. Especially in very small two-stroke engines an exhaust gas aftertreatment system is rarely applied, due to disadvantages regarding component temperatures and product costs.
Technical Paper

Comparing the NVH Behaviour of an Innovative Steel-Wood Hybrid Battery Housing Design to an All Aluminium Design

2024-06-12
2024-01-2949
The production of Electric Vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. Compared to conventional materials such as aluminium, wooden structures exhibit significantly higher damping properties. In this study, the potential of lightweight wood composites, specifically steel-wood hybrid structures, is investigated as a potential composite material for battery housings for electric vehicles. Experiments have been performed in order to determine the modal parameters, such as natural frequencies and damping ratios.
Technical Paper

Comparison of Different Downsizing Strategies for 2- and 3-Cylinder Engines by the Use of 1D-CFD Simulation

2016-11-08
2016-32-0037
The internal combustion engine is still the most important propulsion system for individual mobility. Especially for the application of motorcycles and recreation vehicles the extraordinary high power density is crucial. Today, these engines are mainly 4-stroke naturally aspirated MPFI engines. The main difference to the automotive sector is the abandonment of all cost intensive technologies, like variable valve timing, intake air charging or gasoline direct injection. The need for further investigations and implementation of new technologies is given due to the very high share of total road transport emissions of motorcycles and the introduction of the emission limits of EURO5 in 2020. One possibility to reach the future emission limits is the downsizing strategy. For this, the potential for emission and fuel consumption reduction is well known.
Technical Paper

Concept Study of Range Extender Applications in Electric Scooters

2011-11-08
2011-32-0592
Nowadays, politicians are forced by air pollution prevention to demand zero emission vehicles (ZEV) in the form of pure electric vehicles. The poor capacity to weight factor of actual batteries compared to any kind of liquid or gaseous hydro-carbon fuel is the main reason for the retarded implementation of ZEV. Solutions offered by automobile manufacturers are mild to full hybrid powertrains based on the well established ICE platform. The difficulty of those approaches of electrification is to compete with the performance and benefit costumers expect from standard automobiles. Pure electric vehicles are rare and often disappointing regarding range and/or performance. Additionally the costs for such vehicles, which are mainly driven by the battery prices, are comparatively high, impeding their market entrance and acceptance. Low price electric city scooters are actually offered as pure electric vehicles in a wide variety of different models.
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

Considerations of Life Cycle Assessment and the Estimate of Carbon Footprint of Powertrains

2020-11-30
2020-32-2314
Legislative regulations and international agreements like the Paris Agreement have been prepared to enforce the effort to reduce the emission of greenhouse gases (GHGs). Greater environmental awareness among customers and introduction of strict environmental regulations have challenged designers to consider the environmental impact of products together with traditional design objectives in the early stages of product design. An important environmental impact factor is the carbon footprint of a product because carbon dioxide (CO2) emissions are a main cause of the global climate change. An early assessment of the product carbon footprint is beneficial because at this stage, design changes are still possible with little effort and at low cost. Actually, there is no detailed methodology for a CO2 impact estimation in the early design phases available and very few researches have been conducted for the special segment of small powertrains.
Technical Paper

Control of a Low Cost Range Extender for L1e Class PHEV Two-Wheelers

2014-11-11
2014-32-0014
Due to the small number of two wheelers in Europe and their seasonal use, their contribution to the total emissions has been underestimated for a long time. With the implementation of the new emission regulation 168/2013 [3] for type approval coming into force 2016, the two wheeler sector is facing major changes. The need to fulfil more stringent emission limits and the high demand on the durability of after treatment systems result in an engine control system that is getting more complex and therewith more expensive. Especially the low cost two wheelers with small engine capacities will be affected by increasing costs which cannot be covered by the actual competitive product price. Therefore, new vehicle concepts have to be introduced on the market. A vehicle concept of a plug in hybrid electric city scooter with range extender as well as the range extender itself have already been published in SAE Papers 2011-32-0592 [1] and 2012-32-0083 [2].
Technical Paper

Coupling Node Reduction of a Synchronous Machine Using Multipoint-Constraints

2014-06-30
2014-01-2067
The noise vibration and harshness (NVH) simulation of electric machines becomes increasingly important due to the use of electric machines in vehicles. This paper describes a method to reduce the calculation time and required memory of the finite element NVH simulation of electrical machines. The stator of a synchronous electrical machine is modeled as a two-dimensional problem to reduce investigation effort. The electromagnetic forces acting on the stator are determined by FE-simulation in advance. Since these forces need to be transferred from the electromagnetic model to the structural model, a coupling algorithm is necessary. In order to reduce the number of nodes, which are involved in the coupling between the electromagnetic and structural model, multipoint constraints (MPC) are used to connect several coupling nodes to one new coupling node. For the definition of the new coupling nodes, the acting load is analyzed with a 2D-FFT.
Technical Paper

Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-01-01
2004-01-2105
An efficient and economic method to increase the performance of four stroke engines can be accomplished by utilizing the crankcase supercharging method. The lubrication of the movable parts in the crankcase by mixing the intake air with lubricant leads to a high oil consumption and disadvantages in the emission characteristics. This paper describes parts of a research project with the goal to develop a supercharged four–stroke engine with a closed loop lubrication system for the crank train and the cylinder head. The thermodynamic layout and the development of an oil separating system have been carried out with the help of simulation tools and development work on a flow test bench.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Technical Paper

Development of a Virtual Sensor to Predict Cylinder Pressure Signal Based on a Knock Sensor Signal

2022-03-29
2022-01-0627
Virtual sensing refers to the processing of desired physical data based on measured values. Virtual sensors can be applied not only to obtain physical quantities which cannot be measured or can only be measured at an unreasonable expense but also to reduce the number of physical sensors and thus lower costs. In the field of spark ignited internal combustion engines, the virtual sensing approach may be used to predict the cylinder pressure signal (or characteristic pressure values) based on the acceleration signal of a knock sensor. This paper presents a method for obtaining the cylinder pressure signal in the high-pressure phase of an internal combustion engine based on the measured acceleration signal of a knock sensor. The approach employs a partial differential equation to represent the physical transfer function between the measured signal and the desired pressure. A procedure to fit the modeling constants is described using the example of a large gas engine.
Journal Article

Development, Calibration and Validation of a Tribological Simulation Model for the Piston Ring Pack of a Large Gas Engine

2022-03-29
2022-01-0323
Increasing demands regarding the efficiency and emissions of internal combustion engines will require higher peak firing pressures and increased indicated mean effective pressures in the future. Adaptation of these parameters will result in higher thermal and mechanical loads that act on core engine components. To meet the future requirements, it is essential to make changes to the design of the tribological system, which is composed of the piston, piston rings, liner and lube oil, while maintaining the robustness and reliability of the engine and its components. Modification of the tribological system requires in-depth knowledge of wear and friction. This paper presents the setup of a model of the tribological system (piston, piston rings, liner and lube oil) of a large gas engine in the commercial software AVL EXCITE™ Piston&Rings as well as its calibration and validation with data obtained from a test bed.
Journal Article

Different Speed Limiting Strategies for 50cm3 Two-Wheelers and Their Impacts on Exhaust Emissions and Fuel Economy

2011-11-08
2011-32-0587
Usually the power output of 50 cm₃ two wheelers is higher than necessary to reach the maximum permitted vehicle speed, making engine power restriction necessary. This publication deals with different power restriction strategies for four-stroke engines and their effect on exhaust emissions. Alternative power limitation strategies like EGR and leaning were investigated and compared with the common method of spark advance reduction to show the optimization potential for this certain engine operation conditions. From these tests, a substantial set of data showing the pros and cons in terms of emissions, combustion stability and fuel economy could be derived for each speed limiting technique.
X