Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Numerical Simulation of Transient Heat Transfer among Multi-Component Coupling System in Internal Combustion Chamber

2008-06-23
2008-01-1818
A 3-D numerical analysis model of transient heat transfer among the multi-component coupling system in combustion chamber of internal combustion engine has been developed successfully in the paper. The model includes almost all solid components in combustion chamber, such as piston assembly, cylinder liner, cylinder head gasket, cylinder head, intake valves and exhaust valves, etc. With two different coupling heat transfer modes, one is the lubricant film heat conduction between two moving components, another is the contact heat conduction between two immovable solid components, and with the direct coupled-field analysis method of FEM, the heat transfer relation among the components is established. The simulation result dedicates the transient heat transfer process among the components such as moving piston assembly and cylinder liner, moving valves and cylinder head. The effect of cylinder head gasket on heat transfer among the components is also studied.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

34 Experimental Analysis of Piston Slap from Small Two-Stroke Gasoline Engine

2002-10-29
2002-32-1803
This project is an experimental investigation and optimization of piston slap noise in small two-stroke gasoline engine. Piston slap is one of the most significant mechanical noise sources in an internal combustion engine. It is a dynamic impact phenomenon between the piston and the cylinder block caused by changes in the lateral forces acting on the piston. The change in cylinder block vibration level caused by the piston impact is considered as a measure of piston slap during this experiment. The intensity of piston slap is measured in terms of vibration level in ‘g’ units, by means of accelerometers mounted on the cylinder block with Top Dead Center (TDC) and Bottom Dead Center (BDC) marker. For the design of low noise engines, all the major parameters, which contribute to piston slap, are listed and the critical four are examined through additional experiments.
Technical Paper

36 Development of a High Performance Small Gas Engine for a Gas Engine Heat Pump

2002-10-29
2002-32-1805
GHP which, is the heat pump system for an air conditioning, is directly driven the compressor by a small gas engine. The NOx was reduced 70% less than a conventional gas engine with improvement of thermal efficiency. The combustion chamber shape using strong squish flow is improved in order that the pattern of a heat release is changed to be suitable. Because the relation between NOx and the thermal efficiency is the trade off relation, the air fuel ratio and the ignition timing must be precisely controlled. Detecting the change of the Pi variation calculated from the engine speed variation can control the air fuel ratio.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

3D CFD Analyses of Intake Duct Geometry Impact on Tumble Motion and Turbulence Production in SI Engines

2017-10-08
2017-01-2199
In recent years, engine manufacturers have been continuously involved in the research of proper technical solutions to meet more and more stringent CO2 emission targets, defined by international regulations. Many strategies have been already developed, or are currently under study, to attain the above objective. A tendency is however emerging towards more innovative combustion concepts, able to efficiently burn lean or highly diluted mixtures. To this aim, the enhancement of turbulence intensity inside the combustion chamber has a significant importance, contributing to improve the burning rate, to increase the thermal efficiency, and to reduce the cyclic variability. It is well-known that turbulence production is mainly achieved during the intake stroke. Moreover, it is strictly affected by the intake port geometry and orientation.
Technical Paper

3D CFD Coolant System Simulation for Vehicle Drive-Cycle

2021-09-22
2021-26-0407
The present work deals with the 3-D, transient, system level CFD simulation of an automotive coolant system using a 3D CFD solver Simerics MP+®. The system includes actual CAD of radiator, cooling jacket, coolant pump, bypass valve and thermostat valve. This work is in continuation of the work done by Srinivasan et al. [1] where wax melting, conjugate heat transfer, Fluid Structure Interaction (FSI) of the valve had been solved. Thermostat valve was controlled by wax phase change model which also incorporates the hysteresis effect of wax melting and solidification. The previous work dealt with the simulation of complete cycle, opening, and closing of the thermostat valve system. Besides the physics considered in the previous study, the current model also includes the treatment of cavitation to account for the presence of dissolved gases and vaporization of the liquid coolant.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Technical Paper

3D CFD Upfront Optimization of the In-Cylinder Flow of the 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1492
This paper presents part of the analytical work performed for the development and optimization of the 3.5L EcoBoost combustion system from Ford Motor Company. The 3.5L EcoBoost combustion system is a direct injected twin turbocharged combustion system employing side-mounted multi-hole injectors. Upfront 3D CFD, employing a Ford proprietary KIVA-based code, was extensively used in the combustion system development and optimization phases. This paper presents the effect of intake port design with various levels of tumble motion on the combustion system characteristics. A high tumble intake port design enforces a well-organized stable motion that results in higher turbulence intensity in the cylinder that in turn leads to faster burn rates, a more stable combustion and less fuel enrichment requirement at full load.
Technical Paper

3D Engine Analysis and MLS Cylinder Head Gaskets Design

2002-03-04
2002-01-0663
Multi-layer steel (MLS) cylinder head gaskets are becoming more widely used to seal an engine. Therefore, it is important to understand the interaction between the engine head, block and head gasket. While experimental methods for determining necessary gasket tightening loads and experimental data relating some gasket design parameters to failure are available, it is very costly and time consuming. A numerical method, such as the finite element (FE) method, has proven to be very useful and efficient in aiding gasket design. A 3D engine FE analysis can predict a number of parameters. Of particular interest are the motion as well as the contact profile of the head, block and gasket. This information, usually difficult or impossible to obtain from a 2D FE analysis, can be used to predict the two most common failure modes of a gasket, fatigue crack and leakage.
Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

3D Immersed Boundary Methods for the Calculations of Droplet Trajectories towards Icing Application

2023-06-15
2023-01-1458
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods.
Technical Paper

3D Modeling Applied to the Development of a DI Diesel Engine: Effect of Piston Bowl Shape

1997-05-01
971599
Multidimensional computations are carried out to aid in the development of a direct injection Diesel engine. Intake, compression, injection and combustion processes are calculated for a turbo-charged direct injection Diesel engine with a single intake valve. The effects of engine speed and engine load, as well as the influence of exhaust gas recirculation are compared to experimental measurements. The influence of piston bowl shape is investigated. Three dimensional calculations are performed using a mesh built from the complete CAD definition of the engine, intake port, cylinder and piston bowl. The injection characteristics are found to be of primary importance in the control of the combustion process. At a given injection set, piston bowl shape can be optimized for fluid dynamic and combustion.
Technical Paper

3D Simulations by a Detailed Chemistry Combustion Model and Comparison With Experiments of a Light-Duty, Common-Rail D.I. Diesel Engine

2005-09-11
2005-24-057
The present paper reports the results of the numerical simulations carried out by means of a modified version of the KIVA-3V code and of the comparison with experimental results obtained by using different optical techniques in a single-cylinder optically accessible diesel engine. The engine is equipped with a commercial four valves cylinder head and a second-generation, Common-Rail injection system. A detailed kinetic model consisting of 283 reactions involving 69 species is applied to simulate the combustion process and the soot and NOx formation. The fuel surrogate model consisting of two constituent components, n-heptane and toluene, approximating the physical and ignition properties of the diesel oil, is considered. The Partially Stirred Reactor (PaSR) assumption is adopted to maintain the computational cost within acceptable limits.
Technical Paper

3D Simulationson Premixed Laminar Flame Propagation of iso-Octane/Air Mixture at Elevated Pressure and Temperature

2015-03-10
2015-01-0015
This paper aims to validate chemical kinetic mechanisms of surrogate gasoline three components fuel by calculating one-dimensional laminar burning velocity of iso-octane/air mixture. Next, the application of level-set method on premixed combustion without consideration the effect of turbulence eddies on flame front is also studied in three-dimensional computational fluid dynamic (3D-CFD) simulation. In the 3D CFD simulation, there is an option to calculate laminar burning velocity by using empirical correlations, however it is applicable only for particular initial pressure and temperature in spark ignition engine cases. One-dimensional burning velocities from lean to rich of iso-octane/air mixture are calculated by using CHEMKIN-PRO with detailed chemistry and transport phenomena as a function of different equivalence ratios, different unburnt temperature and pressure ranges.
Technical Paper

3D Spray Measurement System for High Density Fields Using Laser Holography

2002-03-04
2002-01-0739
To develop injection nozzles and to improve the numerical simulation technology of fuel spray, a measuring technology to analyze the process of disintegration into droplets accurately is required. Performances required by a spray droplets measuring device are: “ability to measure in the combustion condition inside the engine cylinder”, “ability to measure the diameter of spray droplets in high-density fields”, “ability to measure the structure of spray droplets in 3D”, and an improved measuring accuracy of non-spherical droplets. These elements are required in order to analyze the spray droplets structure of gasoline direct injection engines. As a promising method to satisfy these requirements, the laser holography method has been already suggested. However, it has some drawbacks, such as a difficulty in measuring spray droplets in high-density fields and over a long analysis period.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

3D-CFD Flow Structures in Journal Bearings

2009-11-02
2009-01-2688
Hydrodynamic radial journal bearings under unsteady load, which are common for automotive applications, are exposed to cavitation, e.g. flow, suction, shock and exit cavitation. The fluid mechanic description of the flow in journal bearings takes advantage of the small bearing clearance, which allows the reduction of the Navier-Stokes equations and leads to the Reynolds equation. The Reynolds equation is two-dimensional, the radial pressure gradient and the radial velocity component are neglected. However, the equation includes the surface velocities, oil density and viscosity and describes the relation between hydrodynamic pressure and local clearance. With the introduction of a cavitation index or a mass flow coefficient a powerful method to carry out numerical studies can be created, which allows the calculation of flow properties and the prediction of regions where the lubrication film disintegrates.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
X